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ABSTRACT 

Several  a s t rome t r i c  models are t e s t e d  on e n t i r e  and l i m i t e d  

p l a t e  areas t o  analyze t h e i r  a b i l i t y  t o  remove systematic e r r o r s  from 

in t e rpo la t ed  s a t e l l i t e  d i r e c t i o n s  using a rigorous photogrammetric 

reduct ion as a standard.  R e s i d u a l  p l o t s  i l l u s t r a t e  the  absence o r  

remainder of systematic e f f e c t s  i n  measured p l a t e  coordinates  a f t e r  

the a s t rome t r i c  reduction i s  performed using the method of least 

squares. 

reduction by a s t rome t r i c  means t o  achieve comparable accuracies t o  

those of a photogrammetric reduction on t h e  short f o c a l  length camera. 

Conclusions are made as t o  what condi t ions w i l l  permit the  
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1. INTRODUCTION AND BACKGROUND 

. 

I n  recent  decades man h a s  achieved the c a p a b i l i t y  of launching 

ob jec t s ,  manned o r  unmanned, i n t o  the  heavens f o r  many s c i e n t i f i c  and 

m i l i t a r y  purposes. Regardless of the reason f o r  launch, a knowledge 

of the pos i t i on  i n  space of the  missi le ,  balloon, sa te l l i t e  o r  o t h e r  

body is v i t a l  information whose accuracy is a funct ion of the  tech- 

nique used i n  t h e  determination. The observation of heavenly bodies 

has  long been pract iced i n  t h e  f i e l d  of geodesy. However, the  advent 

of sa te l l i t es  h a s  provided t h e  geodesis t  w i t h  a well-defined o b j e c t  a t  

a f i n i t e  d i s t ance  useful  i n  e s t a b l i s h i n g  a s p a t i a l  r e l a t i o n s h i p  between. 

t h e  sa te l l i t e  and seve ra l  ground s t a t i o n s  or i n  determining parameters 

of the e a r t h ' s  g rav i ty  f i e l d  due t o  a departure  of the  satel l i te  from 

i ts  o r b i t  i n  a c e n t r a l  f o r c e  f i e l d .  Thus, the methods i n  c lass ical  

geodesy of performing computations on some reference surface may be 

a l t e r e d  o r  replaced by a v e c t o r i a l  s o l u t i o n  dependent on the s p a t i a l  

1 
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t e l l i t e  i n  a tri-axial C a r t e s i a n  

coordinate system. Obviously, t h e  determination of the satell i te 's  

p o s i t i o n  n u s t  be done with a spec i f i ed  degree of accuracy i n  o rde r  f o r  

the resu l t s ,  dependent on t h a t  de t e rn ina t ion ,  t o  be u s e f u l  f o r  geodet ic  

purpose s . 
This  r e p o r t  is concerned with t h e  method of determining a satel- 

l i t e ' s  posi t ion.  More s p e c i f i c a l l y ,  i t  dea ls  with t h e  o p t i c a l  determin- 

a t i o n  i n  which t h e  s a t e l l i t e  is photographed aga ins t  a background of 

stars. (There are, of course,  e l e c t r o n i c  means of determining pos i t i on . )  

The r epor t  w i l l  examine the  p r a c t i c a l  app l i ca t ion  of t he  two basic  

methods of "plate  reduction" and w i l l  chronicle  t h e  r e s u l t s  of t he  

author 's  experimentation with t h e s e  methods. 

ESSA supplied d a t a  from three  photographic p l a t e s  i n  the  form 

of measured star and satel l i te  coordinates.  

posed simultaneously a t  t h e  following s t a t i o n s :  

The t h r e e  p l a t e s  were ex- 

P l a t e  No. 2559 Lynn Lake, Manitoba 

P l a t e  No. 6132 Frobisher Bay, N W  

P l a t e  No. 5205 Cambridge, NWT 

The event occurred on 30 November, 1965, t he  satel l i te  being Echo 11. 

Twenty-one s a t e l l i t e  images were se l ec t ed  on each p l a t e  a s  tes t  p o i n t s  

f o r  which d i r e c t i o n s  i n  space were determined. 

Using these same three  photographic p l a t e s  and their accompany- 

ing  da ta ,  t h e  author  inves t iga t ed  the  a p p l i c a t i o n  of s e v e r a l  a s t rome t r i c  

techniques t o  the  reduction o f  t h e  p l a t e s  wi th  a c r i t i c a l  view t o  t h e i r  

e? 
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a b i l i t y  t o  remove systematic  e r r o r s  and t o  their comparison with t h e  

photogrammetric approach. The r e s u l t s  of t h i s  experimentation and 

its implementation w i l l  be discussed i n  d e t a i l  and conclusions drawn. 

This repor t  w i l l  not  d w e l l  on the  fundamentals of sphe r i ca l  

astronomy o r  a t tempt  t o  give a d e t a i l e d  background on p l a t e  reduct ion 

techniques and related problems. Its primary concern is the r e s u l t s  

of the experimentation. 



2. THE AVAILABLE DATA 

I n  September, 1967, t h e  Geodetic Laboratory of ESSA forwarded 

the v i t a l  information concerning stellar p l a t e s  2559, 5205,  and 6132 

t o  the  Department of Geodetic Science. T h i s  information was contained 

mostly on punched cards. For  each p l a t e  the following data was avai lable:  

(1) Punched cards  containing t h e  SA0 catalogue p o s i t i o n s  of t h e  

stars whose images were measured on each p l a t e .  

given i n  rad ians ,  and the  s tar  i d e n t i f i c a t i o n  number was a combina- 

t i o n  of le t ters  and numbers having a r e l a t i o n  t o  the  manner i n  which the 

p o s i t i o n s  were contained on magnetic tapes .  

These p o s i t i o n s  were 

There is a code ava i l ab le  

from BSSA which w i l l  r e l a t e  the ESSA SA0 star number t o  the number found 

i n  the  four-volume SA0 catalogue. 

(2) Punched cards  containing the updated apparent  p o s i t i o n s  of 

the stars used i n  the reduct ion,  i n  radians.  As t h e  "apparent" p o s i t i o n  

connotes, the  catalogue star p o s i t i o n s  had been updated f o r  precess ion ,  

nu ta t ion ,  proper  motion, and annual aber ra t ion .  The epoch used i n  t h i s  

updating procedure was approximately a star's mean exposure t i m e  (each 

star appears as more than one image), s u f f i c i e n t l y  accura te  f o r  updating 

t o  an apparent place.  The method of star updating is a v a i l a b l e  and w i l l  

no t  be given here E o t t e r ,  1963 . 
(3) Punched cards containing the measured p l a t e  coord ina tes  of 

each star image r e fe r r ed  t o  an o r i g i n  determined by fou r  d r i l l  holes.  

These coordinates  were f r e e  of cancell ing-type e r r o r s  assoc ia ted  wi th  

4 
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t he  comparator measuring process. 

on a Mann comparator, the procedure of removing opera tor  b i a s  and cancel-  

l i n g  type e r r o r s  being a r igorous one p o t t e r ,  1967, pp. 112, 113. 
coordina tes  furnished were the output  of the ESSA "patching and matching'' 

program which i s  the f i n a l  s t ep  i n  t h e  r igorous procedure mentioned above. 

Systematic e r r o r s  still remaining i n  the  coord ina tes  on t h e  punched cards, 

then, were of t he  non-cancelling v a r i e t y  (non-perpendicularity of the  

comparator axis, weave of t h e  guide of the  comparator ax i s ,  pe r iod ic  screw 

error, and t h e  secular  screw e r r o r ) .  I n  the  reduct ion procedure of ESSA, 

the non-perpendicularity of the comparator axis, i n  the form of an  angle ,  

is carried as an unknown. 

later. 

method of exposing a p l a t e  remains t o  be explained a l so .  

measurements had equal weights of one. 

The p l a t e  measurements had been made 

The 

The method of i ts  app l i ca t ion  w i l l  be shown 

The number of images measured f o r  a s i n g l e  star and t h e  ESSA 

A l l  coordinate  

(4) Punched cards containing p l a t e  coord ina tes  f o r  each s a t e l l i t e  

image. These coord ina tes  were of the same s t a t u s  as the  star coord ina tes  

mentioned above; i .e.,  the  output  of the  "patching and matching'' program. 

I t  is important t o  note t h a t  while o t h e r  sa te l l i te  coord ina tes  were in- 

cluded i n  the  forwarded d a t a  (containing var ious  c o r r e c t i o n s  t h a t  are 

made by ESSA a f t e r  t h e i r  p l a t e  reduction procedure),  t he  sa te l l i t e  coordi-  

n a t e s  of i n t e r e s t  here a r e  t o  be regarded as measurements of images of 

"unknown stars" without co r rec t ions  f o r  phase angle ,  p a r a l l a c t i c  refrac-  

t i o n ,  d iu rna l  abe r ra t ion  and o the r  c o r r e c t i o n s  tha t  a r e  appl ied  la ter  i n  

the reduct ion process  t o  s a t e l l i t e  images. Of t h e  200 o r  more satel l i te  

images ac ross  the p l a t e ,  21 were selected by ESSA t o  be used as the tes t  
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p o i n t s  i n  the agency comparison and were a l s o  used by the  au thor  i n  

h i s  inves t iga t ions .  

r e f e r  t o  these 21 po in t s ,  and the images w i l l  be regarded as those  of 

unknown stars. Moreover, the  satell i te images on each p l a t e ,  al though 

numbered i n  t h e  same fash ion ,  were considered independent of each o the r  

Henceforth,  any d iscuss ion  of sa te l l i te  images w i l l  

and not on a curve r e s u l t i n g  from a cu rve - f i t  procedure. The brush 

t ape  times of exposure f o r  corresponding numbered images are, i n  f a c t ,  

i d e n t i c a l  f o r  each p l a t e ,  but t h i s  w a s  a r e s u l t  of the synchronizat ion 

of  the c locks  i n  the  ESSA t rack ing  system and not  the r e s u l t  of s e l ec t -  

i ng  21  times and then computing corresponding coord ina tes  from the  curve 

of the f i t t i n g  procedure of ESSA. 

( 5 )  L i s t i n g s  of s t a t i o n  l a t i t u d e s  and longi tudes,  atmospheric 

da t a ,  and brush tape times. A co r rec t ion  f o r  each p l a t e  was given t o  

c o r r e c t  t h e  brush tape times t o  U.T.l. 

times of exposure were a l s o  included. 

Computed local apparent sidereal 

Along with t h i s  data, t h e  Geodetic Laboratory of ESSA included 

t h e  output  of i t s  "single camera or ientat ion ' '  program. This program 

performs a least squares  adjustment us ing  the photogrammetric model of 

Dr .  Hellmut Schmid t o  determine the elements of i n t e r i o r  and e x t e r i o r  

o r i e n t a t i o n  of the taking camera and o t h e r  parameters considered unknown. 

Included also i n  t h i s  output  were the  ESSA computed d i r e c t i o n s  f o r  the 

21  satel l i te  poin ts .  As mentioned e a r l i e r ,  the  tes t  satellite images 

f o r  each p l a t e  were regarded as those of unknown stars. The d i r e c t i o n s  

given were f o r  t he  apparent place of these unknown stars. 

were made f o r  phase angle, p a r a l l a c t i c  r e f r a c t i o n  o r  d iu rna l  aber ra t ion .  

No c o r r e c t i o n s  
51 

Y 
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A b r i e f . d e s c r i p t i o n  of the  ESSA process  of exposing a stellar 

p l a t e  is necessary t o  see how the  data described above was generated. 

A more detailed desc r ip t ion  is ava i lab le  i n  E o t t e r ,  1963 

1963 . 
or Fay lo r ,  

F i r s t  of a l l ,  the tak ing  cameras were Wild BC-4's with t h e  

Ast ro ta r  lens .  The f o c a l  length of these cameras is about 300 m i l l i -  

meters and the  f i e l d  of view 33 degrees by 33 degrees. 

operated i n  the  f ixed  mode, equipped with s h u t t e r s  t h a t  were programmed 

The cameras were 

to  opera te  i n  t h e  following manner: P r io r  t o  satell i te pass  (pre-cali-  

b ra t ion)  an e x t e r i o r  i r i s - type  shut ter  produced four  star-trails f o r  

each star i n  the f ie ld  of view w i t h  f i v e  d i s t i n c t  images i n  each 

trail.  During satell i te passage, i n t e rna l  r o t a t i n g  d i s k s  chopped t h e  

satel l i te  t r a i l  with the  ex te rna l  s h u t t e r  reducing the exposure rate 

and iden t i fy ing  the satell i te trail .  Af te r  sa te l l i te  passage four  more 

star trails  were produced with f i v e  images each (posLca l ib ra t ion1 .  

The brush tape times of exposure were recorded. 

t o  the  beginning of each image on the  plate. 

These times corresponded 

I n  the  p l a t e  reduction process,  t he  p l a t e  waslsubdivided i n t o  

g r id  squares,  and a pre-ca l ibra t ion  star t ra i l  and a pos t -ca l ibra t ion  

star trail  were se lec ted  i n  each square. The beginning of each of the 

f i v e  images i n  a t r a i l  were measured. For t h i s  problem approximately 

110 star trails were selected per  p l a t e  with f i v e  images measured per  

t r a i l  ( i n  severa l  cases, less than f i v e  images per  t r a i l  were able t o  

be measured). This  was normal procedure f o r  ESSA. Obviously, the same 

star d i d  appear i n  s o m e  cases i n  more than one trail .  However, roughly 

100 d i f f e r e n t  stars were used p e r  p l a t e  i n  the ESSA reduction. 
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The star images were numbered thusly: The f i r s t  two d i g i t s  

r e fe r r ed  t o  the  area of the  p l a t e  i n  which t h e  t ra i l  appeared. 

t h i r d  d i g i t  r e f e r r ed  t o  the t r a i l  of exposure (1-8). 

d i g i t s  indicated the number of the image i n  the t r a i l .  

The. 

The last two 

Therefore,  i m a g e  

number 16103 would ind ica t e  the t h i r d  image of star number 161 which 

appeared i n  the  f i r s t  t r a i l  exposed. Fur ther ,  l e t  u s  assume the numbers 

161 and 596 r e fe r r ed  t o  the  same star i n  the sky. Since the  star was 

exposed a t  d i f f e r e n t  t imes,  161 and 596 would be t r e a t e d  as d i f f e r e n t  

stars, one appearing i n  the f i r s t  t r a i l ,  the o t h e r  i n  the s ix th .  Obvi- 

ous ly ,  the  catalogue p o s i t i o n s  of these  "two" stars would be i d e n t i c a l ,  

but the updated observed p o s i t i o n s  would d i f f e r .  

I n  the au thor ' s  experimentation and i n  the d i r e c t i o n s  i s sued  t o  

the  agencies  i n  how t o  t r e a t  t h e  data, it must be remembered that brush 

tape  times (U.T.G.) p l u s  the  co r rec t ion  t o  U.T.l., a s soc ia t ed  with the 

satell i te images, were regarded as imaginary times when l i g h t  was emitted.  

(While t h i s  was n o t  so i n  reali ty,  it negated making co r rec t ions  f o r  l i g h t  

t r a v e l  t i m e ,  a process  not v i t a l  to  the  purpose of t h e  agency comparisons.) 

As was mentioned earlier, reproductions of the  available data d i s -  

cussed above were forwarded t o  the  o the r  three agencies  i n  October, 1967, 

t o  enable them t o  compute d i r e c t i o n s  f o r  t he  21 sa te l l i t e  images on each 

p la t e .  S p e c i f i c a l l y ,  approximate parameters f o r  the elements of i n t e r i o r  

and e x t e r i o r  o r i e n t a t i o n  were given along wi th  diagrams and equat ions  

that  r e l a t ed  the image space t o  the ob jec t  space. These were taken from 

Fchmid, 1959, pp. 12-1g . Other data forwarded included the  brush t ape  

times of observat ion f o r  each s tar  and satel l i te  image w i t h  the uniform 
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p l a t e  co r rec t ion  t o  ob ta in  U.T.l., p l o t s  by quadrant of the p l a t e s  s h o w  

ing star and s a t e l l i t e  p o s i t i o n s ,  and l i s t i n g s  of a l l  material contained 

on the punched cards  that were sent .  Approximate r i g h t  ascensions (near- 

est 10 seconds of t i m e )  and approximate d e c l i n a t i o n s  (nea res t  10 seconds 

of a r c )  were also given f o r  the satel l i te  images. Decks of  punched ca rds  

that were sen t  contained observat ion times and s t a t i o n  coord ina tes  as 

w e l l  as atmospheric data, SA0 catalogue p o s i t i o n s  of the  stars, and star 

and satel l i te  image coordinates .  The agencies  were ins t ruc t ed  t h a t  times 

f o r  the  satel l i te  were treated as l i g h t  emission times (as already 

stressed). P o s i t i o n s  of the  s a t e l l i t e  images were requested us ing  the  

exact same procedure normally employed when reducing data f o r  t he  Geo- 

d e t i c  S a t e l l i t e  Data Center. It  was requested that  the reduced data be 

returned i n  the same format used by the GSDC. 

reduct ion procedure having occurred s ince  the compilation of agency 

Fina l ly ,  any changes i n  

procedures i n  p o t t e r ,  1963 were. requested.  



3. A BRIEF HISTORICAL SKETCH 

The reduct ion of s t e l l a r  photographic p l a t e s  is not  a development 

of the space age. I n  f a c t ,  one of the p r i n c i p a l  methods of reduct ion 

st i l l  i n  p r a c t i c e  today w a s  f i r s t  formulated i n  the l a t e  1800's. For 

the purposes of t h i s  paper ,  "p la te  reduction" w i l l  mean the method of 

determining a d i cec t ion  i n  space t o  a s a t e l l i t e  o r  star by r e l a t i n g  i ts  

pos i t i on  in  the image space t o  the p o s i t i o n s  of known stars a l s o  i n  the  

image space t o  which t h e  d i r e c t i o n s  a r e  known i n  the ob jec t  space. It 

impl ies  formulat ing a mathematical model o r  r e l a t ionsh ip ,  be i t  physi- 

c a l l y  i n t e r p r e t a b l e  o r  no t ,  tha t  w i l l  descr ibe a dependence among ob jec t  

coordinates  and image coordinates .  Two d i f f e r e n t  techniques f o r  p l a t e  

reduct ion have been developed which we normally r e f e r  t o  as the  as t ro-  

metric ( p l a t e  cons tan t )  method and the  photogrammetric method. 

photogrammetric method h a s  a phys ica l  i n t e r p r e t a t i o n  while t he  as t ro-  

metric method does not.  

The 

The a s t rome t r i c  method has  been used by astronomers f o r  decades 

to  determine s te l lar  pos i t i ons  of unknown stars and t h e i r  proper motions. 

However, the photographic cameras that have been used d i f f e r  from the  

b a l l i s t i c  s a t e l l i t e  t r ack ing  cameras in use today, most notably by t h e i r  

longer  f o c a l  length;  and f o r  t h i s  reason the  as t romet r ic  approach is a 

quest ionable  process  when appl ied  t o  p l a t e s  from the s h o r t  foca l  length  

(less than 1000 millimeters) b a l l i s t i c  camera. Ex i s t ing  i n  the batch 

10 
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of data s e n t  by ESSA, then, was an e x c e l l e n t  opportuni ty  t o  eva lua te  

some as t romet r ic  techniques and t o  compare t h e m  with a photogrammetric 

reduct ion f o r  a b a l l i s t i c  camera. But t h i s  is a matter f o r  l a te r  d is -  

cussion. Since the cameras t h a t  have been used i n  astrometric reduc- 

t i o n s  are of a long  f o c a l  l eng th  v a r i e t y ,  they cover a r e l a t i v e l y  small 

por t ion  of the  sky. Obviously, the bundles of rays  i n  t h i s  s i t u a t i o n  

are c l o s e  to  t h e  o p t i c a l  axis even a t  the extremes of t h e  p l a t e ,  thus  

minimizing the a f f e c t s  of c e r t a i n  l e n s  d i s t o r t i o n s .  For example, the 

f o c a l  length  of the Sheepshanks Equator ia l  t e lescope  of Cambridge Obser- 

vatory i n  England was 5.89 meters, and t h e  region of the  sky photographed 

was l$ degrees by 1% degrees  Emart, 1962, p. 273 . 
BC-4 cameras i n  t h i s  i nves t iga t ion  which had a f o c a l  length  of 300 m i l l i -  

meters and covered a region 33 degrees  by 33 degrees. 

Compare t h i s  t o  the  

(Generally,  the 

cameras used i n  a s t rome t r i c  work have foca l  l e n g t h s  of about 3 meters 

and cover an area 2 degrees  by 2 degrees  and the  ba l l i s t ic  cameras have 

f o c a l  lengths  of 1000 t o  300 millimeters and f i e l d s  30 degrees  by 30 

degrees  prown, 1 9 6 3  . I  

During World War 11 the  computation of bombing tables necess i t a t ed  

the accura te  knowledge of the p o s i t i o n  of the bombing a i r c r a f t  a t  t h e  

i n s t a n t  t he  bomb was re leased.  The cameras used,  later t o  become known 

as "Bal l i s t ic"  cameras, were f ixed  (as opposed t o  equa to r i a l ly  mounted, 

s i d e r e a l l y  dr iven)  w i t h  foca l  l eng ths  of about 300 millimeters, f i e l d s  

of 20 degrees  by 30 degrees,  and d i r e c t i o n a l  accurac ies  of 10 t o  20 

seconds of a r c  Frown, 1963 . 
method of plate reduction. (The next  s ec t ion  w i l l  discuss var ious  

Turner 's  a s t rome t r i c  method comprised the  
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as t romet r ic  methods as well as the  photogrammetric method of p l a t e  

reduction. 1 

Defic ienc ies  i n  the as t romet r ic  method of p l a t e  reduct ion became 

apparent  when H e l l m u t  Schmid performed some inves t iga t ions  of the tech- 

niques p r o m ,  1963 . 
the photogrammetric theory of Von Gruber, thereby d iscard ing  t h e  astro-  

metric approach. Accuracies improved immensely with the app l i ca t ion  of 

He pursued a method of p l a t e  reduction based on 

Schmid's f i nd ings ,  due i n  part t o  improved equipment, bu t  mainly due to  

the more r igorous  photogrammetric method of p l a t e  reduct ion prow, 1963 . 
Thus, the photogrammetric method of p l a t e  reduct ion has been im- 

proved upon taking i n t o  account l e n s  d i s t o r t i o n s ,  r e f r a c t i o n ,  and o t h e r  

phys ica l  e f f e c t s  which bear upon the problem. Unprecedented accurac ies  

are now claimed using the  photogrammetric approach, and the as t romet r ic  

method has a l l  b u t  been discarded i n  satell i te t racking  with ballist ic- 

type cameras. One agency, the  Smithsonian Astrophysical  Observatory, 

u t i l izes  the  Turner method i n  its data reduct ion today i n  connection 

w i t h  its Baker-Nunn f i lms .  

c 



4. BXPERIMBNIIATION 

4.1 General 

We are i n t e r e s t e d  i n  how w e l l  severa l  a s t rome t r i c  reduct ion models 

remove systematic  e r r o r s  i n  the t h r e e  BC-4 p l a t e s  i n  ques t ion  and how the 

r e s u l t s  compare with the  photogrammetric reduct ion  used by ESSA. 

au thor*s  approach the reduct ions a r e  performed us ing  the  method of least- 

I n  the 

squares,  and then the  residuals (ad jus ted  coord ina tes  less the  measured 

coordinates)  are p l o t t e d  w i t h  a view t o  t h e i r  magnitude and d i r ec t ion .  

Any systematic  e f f e c t s  s t i l l  remaining may be then observed. 

residual p l o t s  may be compared t o  the p l o t s  of the r e s i d u a l s  as  computed 

f o r  the  ESSA photogrammetric reduction. 

t i o n s ,  d i r e c t i o n s  are computed f o r  the 21 sa te l l i t e  t e s t  p o i n t s  t o  compare 

w i t h  the ESSA photogrammetric results. 

Also, the 

I n  a l l  but  s eve ra l  of the reduc- 

It must be remembered that while  

the d i r e c t i o n s  computed a s t rome t r i ca l ly  f o r  these  satel l i te  p o i n t s  w i l l  

i n  many cases compare t o  the ESSA r e s u l t s  w i th in  a second of arc, t h i s  

i n  i t s e l f  i s  not  a good test  of the method. 

show systematic  e f f e c t s  s t i l l  remaining, we must base t h e  dec is ion  as t o  

the usefu lness  of the  method on t h i s  f a c t .  The author  r e a l i z e s  t h a t  more 

soph i s t i ca t ed  methods of s t a t i s t i c a l  a n a l y s i s  are ava i l ab le  f o r  eva lua t ing  

a mathematical model and comparing it t o  another ,  bu t  f e e l s  that the anal-  

y s i s  i n  t h i s  r epor t  i s  s a t i s f a c t o r y  t o  accomplish the  objec t ive .  

For i f  the  p l o t t e d  r e s i d u a l s  

A l l  programming, un le s s  otherwise ind ica t ed ,  is  the r e s u l t  of the 

au tho r*s  e f f o r t s ,  and is  in  the SCATRAN language st i l l  used a t  The Ohio 

13 
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S t a t e  Universi ty .  

cluded, but  t h e  important and meaningful resul ts  are compiled. Double 

p rec i s ion  arithmetic is used i n  most cases  except  where noted. 

The output  of every computer run is obviously no t  in- 

4.2 Organizat ion of the Data and S t a r  Updating 

As was discussed  i n  Sec t ion  2, there is no def ic iency  of star images 

t o  use i n  the  reduct ions  on each of the p l a t e s  s ince  t h e r e  are over 100 

star trails  pe r  p l a t e  w i t h ,  i n  most cases ,  f i v e  images i n  each t ra i l .  

Assuming about 100 w e l l  d i s t r i b u t e d  star images are s u f f i c i e n t  f o r  the 

reduct ions,  the t h i r d  image i n  each t r a i l  is  selected and the  o t h e r  four  

images i n  a t ra i l  are discarded. The breakdown of stars used is as fo l -  

lows: P l a t e  2559, 111 stars; P l a t e  5205, 114 stars; P l a t e  6132, 106 stars. 

The d i s t r i b u t i o n  of t he  s t a r s  and the 21 satel l i te  images on the p l a t e s  is 

shown i n  Charts 1, 2 ,  and 3. The area represented is 17 cent imeters  by 17 

centimeters. 

of the  number ind ica t ing  the  a c t u a l  measured pos i t i on  of the star o r  satel- 

l i t e  image, 

A l l  images are p l o t t e d  by number, the lower left-hand corner  

Numbers 126 through 494 running diagonal ly  ac ross  t h e  cen te r  

of all p l a t e s  are the satel l i te  images. The o r i g i n  of t h e  p l a t e  coordin- 

ate system is a t  the  cen te r  (determined by f i d u c i a l s )  wi th  p o s i t i v e  x t o  

the r i g h t  and p o l i t i v e  y t o  the top. A re ference  to  star 163, f o r  example, 

now r e f e r s  t o  its t h i r d  image i n  the  t r a i l ,  each star being represented by 

only one image. I t  mus t  be remembered t h a t ,  f o r  example, on p l a t e  2559, 

111 separate SA0 catalogue stars a r e  not used, but r a t h e r  111 separate 

trails on the p la t e .  "Stars" 146 and 573 are a c t u a l l y  the  same star i n  

the sky, b u t  f o r  purposes of t h e  reduction they are sepa ra t e  stars, appear- 

ing i n  d i f f e r e n t  p l a t e  l oca t ions  because of the  f ixed  mode of t he  camera 

- 
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11 s t a r s  

are i n  the SA0 system (mean equator  and equinox of 1950.0) and can be 

found i n  the SA0 catalogue. 

of stars on a l l  p l a t e s ,  covering a l l  areas b u t  the f a r t h e s t  corners .  

A s  can be seen, there  i s  a good d i s t r i b u t i o n  

As the agencies d i d ,  a l l  observed coord ina tes  a r e  weighted equal ly  

wi th  weights of uni ty .  

t o  handle,  a t  best, and s t a t i s t i c a l l y  doubtful.  Obviously, t he  stars are 

of varying magnitudes, and t h i s  would undoubtedly a f f e c t  t he i r  a b i l i t y  t o  

be measured. 

Any o t h e r  system of weighting would be d i f f i c u l t  

B u t  r e so lu t ion  and o the r  q u a l i t i e s  of the tak ing  camera, 

very d i f f i c u l t  t o  model mathematically,  would have t o  be considered, and, 

thus,  one can see the reason f o r  equal weights. The standard e r r o r  f o r  a 

s i n g l e  measurement ( i n t e r n a l  consis tency of comparator) is  unknown to  the  

au thor  but probably amounts t o  seve ra l  microns. 

It might be i n t e r e s t i n g  t o  note tha t  the approximate a l t i t u d e s  and 

azimuths of the p l a t e  c e n t e r s  are: 

5205, 57'30' a l t i t u d e ,  85O36' azimuth;  6132, 41'53' a l t i t u d e ,  309O34' 

azimuth. The e f f e c t s  of r e f r a c t i o n  a r e  obviously smallest f o r  p l a t e  5205. 

The star p o s i t i o n s  in  the  ava i l ab le  d a t a  are the  apparent p l a c e s  as 

I n  t h e  computational process  of the ESSA "single  cam- 

2559, 3 3 O 1 5 '  a l t i t ude ,  21°43* azimuth; 

has  been mentioned. 

era or ien ta t ion"  program, the stars are updated t o  their  "observed'* a l t i -  

tudes and azimuths ( e f f e c t s  of r e f r a c t i o n  and d iu rna l  abe r ra t ion  a r e  added) 

before  the photogrammetric reduct ion is done p o t t e r ,  1967, p. 111 . 
is done t o  remove a l l  remaining systematic e f f e c t s  on the o b j e c t  space. 

This  t a s k  needs t o  be performed, t he re fo re ,  a t  l e a s t  t o  compute the ESSA 

photogrammetric res idua ls .  However, i t  is an unnecessary process  when 

This  
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appl ied  t o  the a s t rome t r i c  reduction. Astrometric models were designed 

t o  remove r e s idua l  e f f e c t s  of annual abe r ra t ion  and r e f r ac t ion .  I n  f a c t ,  

the  SA0 uses the  1950.0 mean pos i t i ons  i n  their  a s t rome t r i c  reduct ion,  

updating only for proper motion p o t t e r ,  1967, p. 103 . However, the 

dec is ion  is t o  update the stars t o  t h e i r  "observed" pos i t i ons ,  and t o  

use these  p o s i t i o n s  as input  i n  the a s t rome t r i c  reduct ions.  Any system- 

a t i c  e f f e c t s  of r e f r a c t i o n  remaining (d iu rna l  abe r ra t ion  is an extremely 

small e f f e c t  t o  begin w i t h )  should be well accommodated i n  the  a s t rome t r i c  

mode 1. 

The updating procedure from apparent t o  "observed" p lace  is a 

straight-forward one. However, f i r s t  a check is made on the  apparent 

p l aces  furnished by ESSA. 

a t  The Ohio S t a t e  Universi ty  and i n  modified form f o r  SA0 catalogue input  

The star updating program of Al len ,  ava i l ab le  

(modified by J. Veach of t h e  Department of Geodetic Science) ,  is used t o  

v e r i f y  23 s t a r  p o s i t i o n s  p l l e n ,  196q . The l a r g e s t  d i f f e rence  i n  decl in-  

a t i o n  is 0.02 seconds of a r c  and i n  r i g h t  ascension,  0.003 seconds of time. 

Recal l  the apparent p o s i t i o n  is the 1950.0 ca ta logue  p o s i t i o n  updated t o  

the epoch of observat ion for the e f f e c t s  of proper  motion, nu ta t ion ,  pre- 

cession,  annual abe r ra t ion ,  and annual para l lax .  Annual p a r a l l a x  has 

been ignored i n  t h i s  case because its e f f e c t s  are neg l ig ib l e  f o r  most 

stars. 

The author 's  program to  update t o  the "observed" p lace  fo l lows  the 

subsequently described procedure. 

The co r rec t ion  f o r  d i u r n a l  abe r ra t ion  can be appl ied immediately 

t o  the apparent r i g h t  ascension and dec l ina t ion .  The cor rec t ion  i s  
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given by pxplana tory  Supplement, p. 4g ; 

CL - a  = Of0213 cos cp cos h sec 6, 

6 - 6  = 0'!320 COS cp sin h sin 6, 

new apparent 

new apparent 
(4.1) 

where h is  the apparent topocent r ic  hour angle  of the s tar ,  cp is the 

geodet ic  l a t i t u d e  of the s t a t i o n ,  and 6 is the apparent dec l ina t ion  of 

the star. 

l a t i t u d e  of the s t a t i o n  is approximately equal  t o  the geodet ic  l a t i t u d e  

I m p l i c i t  i n  equation (4.1) is the  f a c t  that  the  geocentr ic  

and t h a t  t he  r ad ius  of the earth a t  the s t a t i o n  is  approximately equal  

t o  the  equa to r i a l  rad ius .  

t i o n  were furnished by ESSA. 

The l o c a l  apparent s i d e r e a l  times of observa- 

These have a l s o  been checked. 

The add i t ion  of astronomical r e f r a c t i o n  must be accomplished a f t e r  

t he  apparent r i gh t  ascension and dec l ina t ion  p lus  the e f f e c t  of d i u r n a l  

abe r ra t ion  are converted t o  the al t i tude-azimuth system (horizon),  Th i s  

may be accomplished using a series of matrix r o t a t i o n s  where the  end 

r e s u l t  is F u e l l e r ,  i n  p r e s 3  , 
cos a cos A = -sincp cos 6 cos h + coscp sin 6, 

cos a sin A = -cos6 sin h, 

sin a = coscp cos 6 cos h + sin cp sin 6 ,  

(4.2) 

where cp , 6 ,  and h are the  same as i n  the d iu rna l  abe r ra t ion  cor rec t ion ;  

a is the  a l t i t u d e  and A is  the  azimuth from north.  Obviously the  unrefrac- 

ted zeni th  d i s t ance  is (90' - a). 

To compute the amount of r e f r a c t i o n  the United S t a t e s  Coast and 

Geodetic Survey (USC & GS) vers ion  of the  Garf inkel  r e f r a c t i o n  model is 

used and the same model employed by ESSA E o t t e r ,  1967, pp. 121-123 . 

c 
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I n  their  reduct ion procedure f o r  t h i s  event the c o e f f i c i e n t s  i n  t h e  re- 

f r a c t i o n  model were constrained.  The subrout ine used by t h e  author  f o r  

adding r e f r a c t i o n  was w r i t t e n  by Marshall S t a rk  at The Ohio S t a t e  Univer- 

s i t y  and fol lows the Garf inkel  model mentioned ptark, p 8 9  . 
u l a  used is e o t t e r ,  1967, p. 12g , 

The form- 

0 

t an  B = - 
8.7137 

tan  ZR, 

= 1050.61030, 

?72 = 706.11502, 

r/3 = 262.06086, 

q4 = 142.67293. 

I n  t h e  above Z 

f r a c t e d  zeni th  d i s t ance ;  Ts denotes  the  s t a t i o n  temperature i n  degrees  

Kelvin; Ps is  the  s t a t i o n  pressure  i n  mi l l imeters  of mercury; and Po and 

is the unref rac ted  zeni th  d i s t ance ;  ZR denotes the  re- 
0 

To are standard pressure  and temperature. 

Since t h e  r e f r ac t ed  zeni th  d i s t ance  appears  on the r i g h t  side of 

the equat ion,  an i t e r a t i v e  process  is used to  compute the amount of re- 

f r ac t ion .  

re f rac ted  z e n i t h  d i s t ance  is then in se r t ed  on the r i g h t  side of the 

2 is i n i t i a l l y  set equal t o  Z,, and t h e  newly computed R 
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equation u n t i l  the d i f f e rence  i n  succeeding amounts’of r e f r a c t i o n  is less  

than 0.01 seconds of a r c .  

and azimuth a r e  used t o  compute the  photogrammetric res idua ls .  

As we shall see later,  the  r e f r ac t ed  a l t i t u d e  

However, r i g h t  ascension and d e c l i n a t i o n  are required as input  t o  

the as t romet r ic  reductions.  These are obtained by using t f u e l l e r ,  i n  

P r e s 3  9 

COS 6 cos h = -sin 50 COS a cos A + cos 50 sin a, 

COS 6 sin h =   COS^ sin A, 
sin 6 

(4.4) 
= COS<p COS a COS A + sin a sin cp, 

and cl! equals  LAST - h where LAST is the l o c a l  apparent sidereal time. 

The problem here concerns a l o c a l  apparent  sidereal t i m e  t o  use 

t o  compute an “observed” r i g h t  ascension. As subsequent s ec t ions  w i l l  

expla in ,  t he  a s t rome t r i c  model expresses  the r e l a t ionsh ip  of  the measured 

p l a t e  coord ina tes  of the star images t o  a r igorous ly  def ined rec tangular  

(“standard”) coordinate  system i n  a plane tangent  t o  the celestial  sphere,  

the o r i g i n  of which ( a l s o  the  po in t  of tangency) is the  i n t e r s e c t i o n  of 

the o p t i c a l  axis w i t h  t he  c e l e s t i a l  sphere and is uniquely defined i n  

r i g h t  ascension and dec l ina t ion .  The s tandard coord ina tes  of a star are 

a func t ion  of i t s  dec l ina t ion  and of its r i g h t  ascension minus t h e  r i g h t  

ascension of t h e  p o i n t  of tangency. 

right ascension of any star must r e f e r  t o  t h e  same epoch i n  which t h e  

The key here is the f a c t  t h a t  the 

r i g h t  ascension of the po in t  of tangency is chosen s ince  the  camera is 

ear th-f ixed and the p o i n t  of tangency cons tan t ly  changes due t o  d i u r n a l  

motion of the  celestial sphere. I n  o the r  words, the  star images must be 

treated as simultaneous even though we know they are no t  because of 
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pre- and pos t -ca l ibra t ion .  This is  accomplished by choosing a common 

" f i c t i t i o u s "  l o c a l  apparent  s i d e r e a l  time of observa t ion  t o  use i n  comput- 

ing r i g h t  ascension a f t e r  h is computed by equat ion (4.4). 

the  "observed" r i g h t  ascensions and dec l ina t ions  used i n  t h e  as t romet r ic  

reduct ions w i l l  be regarded as " f i c t i t i ous* '  as w i l l  any in t e rpo la t ed  

s a t e l l i t e  p o s i t i o n s  only because of t h i s  t iming problem. 

the  a c t u a l  "observed" r i g h t  ascensions can be obtained by adding the  t r u e  

Henceforth, 

I f  necessary,  

LAST of observat ion t o  the  " f i c t i t i o u s "  r i g h t  ascension and sub t r ac t ing  

24 hours. The " f i c t i t i o u s  observed" r i g h t  ascensions and dec l ina t ions ,  

s to red  on punched cards  along with the  measured p l a t e  coordinates ,  are 

then i n  a usable  form f o r  t he  a s t rome t r i c  reduct ions.  

4.3 The Photogrammetric Reduction and Residuals 

The general  problem of photogrammetry i s  w e l l  known, and the  s ta te  

of the ar t  has  advanced tremendously i n  the l a s t  decade or so. 

references are ava i l ab le  i n  the bibliography, e spec ia l ly  those by Brown, 

Exce l len t  

Hallert, and Schmid. However, t h i s  repor t  w i l l  only dea l  with t h e  spe- 

c i f i c  approach used i n  the  ESSA reduction. No o r i g i n a l  photogrammetric 

reduction i s  performed by the author .  Ins tead ,  the  parameters obtained 

by ESSA i n  its "single-camera o r i en ta t ion"  program are used t o  compute 

r e s idua l s  f o r  the star images E d  ,& t& as t rome t r i c  i n v e s t i g a t i o 3 .  

Their  graphica l  presenta t ion  provides  a b a s i s  f o r  comparison between 

photogrammetric reduct ion and 2 as t romet r ic  reduction. 

t ha t  t he  ESSA reduct ion is r ep resen ta t ive  of the general  photogrammetric 

I t  is assumed 

approach s ince  the mathematical model used is a physical  recons t ruc t ion  

of the geometrical  event ,  and the  formulae and c o r r e c t i o n s  employed are 
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representa t ive  of those i n  c u r r e n t  usage by most photogrammetrists. 

While systematic e r r o r s  are intended t o  be absorbed by t h e  p l a t e  

cons tan ts  i n  an as t romet r ic  model without regard t o  any s p e c i f i c  source 

of systematic e r r o r ,  t h e  photogrammetric approach at tempts  t o  iden t i fy  

t h e  main sources  of systematic  e r r o r ,  model them mathematically,  remove 

the e r r o r s  from the measured coordinates ,  and then relate these  "undis- 

torted'' coord ina tes  t o  the  ob jec t  space through u s e  of the c o l l i n e a r i t y  

equations.  Th i s  is the app l i ca t ion  of the  "central-projection" theory. 

Without regard t o  any phys ica l  in f luences  on the emulsion, the system- 

a t i c  e r r o r s  usua l ly  modeled i n  the photogrammetric reduction of stellar 

p l a t e s  are those non-cancelling e r r o r s  contr ibuted by the  comparator and 

errors cont r ibu ted  by l e n s  d i s t o r t i o n s .  Since stars provide the con t ro l ,  

r e f r a c t i o n  is added t o  the star d i r e c t i o n s  as described i n  the previous 

sec t ion  r a t h e r  than removed from the  p l a t e  coordinates .  

The formulae used by ESSA i n  i t s  reduct ion and used by t h e  author  

t o  compute the  p l a t e  r e s i d u a l s  are now given. I t  must  be remembered tha t  

the  Garfinlcel model (USC & GS vers ion)  has already been appl ied t o  t h e  

stellar d i r e c t i o n s  t o  account f o r  astronomical r e f r ac t ion .  

For non-perpendicularity of t he  comparator axis the c o r r e c t i o n s  

are p o t t e r ,  1967, p. l lg  , 
- 
x = xe + €ye, 

y = YB ( c o r r e c t i o n  is neg l ig ib l e ) ,  
- (4.5) 

where % and y are measured p l a t e  coord ina tes  of the image and C is an 

ad jus t ab le  co r rec t ion  angle  f o r  the amount of non-perpendicularity.  
B 

A 

phys ica l  desc r ip t ion  is available i n  Erown, 1957, p. 86J . 
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The radial d i s t o r t i o n  c o r r e c t i o n s  are plama, 1963 

AR - = Kid2 + K d 4  + &d6, d 

d2 = (x - xs)2+ (y - ys)2. 

I n  these equat ions x and y axe undis tor ted image coordinates;  x and y 
S S 

are ad jus t ab le  coordinates  of the o r i g i n  of d i s t o r t i o n  i n  the p l a t e  co- 

o rd ina te  system; and K1, K2, and K 

d i s t o r t i o n .  

are a d j u s t a b l e  c o e f f i c i e n t s  of r a d i a l  3 

To c o r r e c t  f o r  Conrady (decentering) d i s t o r t i o n ,  the formulae are 

Elama, 1961 , 

- 
= x - A x  conrady 

y"" = 7 - AT [DC3 COS pT + DC2 sin (PT] 

Here K 

<pT is  an ad jus t ab le  angle from the 7 a x i s  t o  the a x i s  of maximum tangen- 

and K 
4 5 

are ad jus t ab le  c o e f f i c i e n t s  of t a n g e n t i a l  d i s t o r t i o n ,  and 

t i a l  d i s t o r t i o n .  
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When combining the  d i s t o r t i o n  co r rec t ions ,  the r e s u l t  is 

Severa l  yea r s  ago, t he  thin-prism model was employed ins tead  of 

the  Conrady form f o r  decenter ing d i s t o r t i o n .  However, Duane Brown showed 

t h a t  while the  thin-prism model was equiva len t  t o  the  Conrady form f o r  

f i r s t - o r d e r  e f f e c t s ,  it was no t  t h e  same f o r  higher-order e f f e c t s ,  and, 

thus ,  the  Conrady form is  now used Frown, 196g . 
on the work of A. E. Conrady, a n  Engl ish astronomer years ago k n r a d y ,  

191g . References t o  t h e  photogrammetric theory and its development f o r  

b a l l i s t i c  cameras may be found i n  Echmid, 1 9 5 j  , Frown, 1953 , Frown, 

1963 , and piown, 1963 . 

The theory is based 

Notice t h a t  i n  t h e  above formulae, the  undis tor ted  coordinates  

are used on the  right-hand s i d e  of the equations.  Th i s  is t h e o r e t i c a l l y  

correct and is  the  form used by the  author  t o  compute t h e  photogrammetric 

r e s i d u a l s  f o r  the t h r e e  p l a t e s ,  only because i n  t h i s  ca se  the  undis tor ted  

coord ina tes  are ava i l ab le .  Normally, as in t h e  case of the ESSA reduction, 

t he  measured (observed) coord ina tes  are i n i t i a l l y  used on the  right-hand 

s i d e  and are being replaced by x** and y** a f t e r  each computation. 

so lu t ion  is i t e r a t e d  u n t i l  

p t t e r ,  1967, p. 1203 and @lama, 1 9 6 3 .  

The 

and AT converge t o  a prescr ibed  to le rance  
d 

The undis tor ted  coord ina tes ,  x and y ,  a r e  computed by t h e  co l l i n -  

e a r i t y  equat ions  Fchmid, 1959, p. 14. 
'a, 
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where q = D X 4  E Y + F 2, 

AI = -cos Q cos x + sin Q! sin w sin x, 
B.I = -cos w sin x, 
C, = sin a cos x f  cos^ sin w sin x, 
A2 = -cos CY sin x - sin Q sin w cos n, 
B2 = cos w cos x, 
C2 = sin Q sin x - COSQ sin w cos x, 
D = sina cosw, 

E = s i n 4  

F = COSQCOS W. 

I n  these  equat ions,  x and y are ad jus t ab le  coord ina tes  of the p r i n c i p a l  

po in t  i n  the plate coordinate  system; cx and c Y 
d i s t ances  to  the  and 7 axis from the  p ro jec t ion  cen te r ;  X, Y, and Z are 

coordinates  of the po in t  i n  o b j e c t  space; and a ,  w ,  x are the Euler ian  

ro t a t ion  ang le s  which rotate t h e  arbitrary rec tangular  coord ina te  system 

of ob jec t  space (X, Y, 2) i n t o  the  p l a t e  coord ina te  system (x ,  y ,  c). 

P P 
are ad jus t ab le  p r i n c i p a l  

Diagrams and a physical  i n t e r p r e t a t i o n  of t he  above are ava i l ab le  i n  kchmid, 

1 9 5 9 .  

I n  the ESSA reduct ion and, therefore ,  i n  t h e  author’s  computation of 

photogrammetric r e s idua l s ,  X, Y ,  and 2 are t h e  d i r e c t i o n  numbers of a star 
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i n  the horizon system centered a t  t h e  p ro jec t ion  c e n t e r  ( t h i s  s u b s t i t u t i o n  

i s  necessary s ince  most stars are located p r a c t i c a l l y  a t  i n f i n i t y )  and 

computed by, 

X = cos  a cos A, 

Y = cos a s i n  A ,  

Z = s i n  a, 

(4.10) 

i n  which a is the  "observed" a l t i t u d e  and A is the  "observed" azimuth. 

A and a a r e  a v a i l a b l e  from the author 's  star updating program and are 

s to red  

cedur e 

p l a t e s  

ESSA , 

on punched cards.  

To compute t h e  photogrammetric p l a t e  r e s idua l s  the  following pro- 

is  used: 

1. Given a and A f o r  a star, compute X, Y ,  2 

2. Compute x and y using (4.9) 

co nr  ady 3. Compute A x  r a d i a l '  "radial A x  

, by formulae (4.6) and (4.7) and Ayconrady 
1 

4* = A x r a d i a l  Axconrady - 
= X I -  € y  d i s t o r t e d  X 

yd is t o r t e  d = Y * Ayradial 

d i s t o r t e d  % 
"conrady 

5. vx = x 

v =  y 'd i s tor ted  - 'B' 

The unknown parameters used i n  t h e  given formulae are a v a i l a b l e  f o r  

2559, 5205, and 6132 from the "s ingle  camera or ien ta t ion"  program 

1 9 6 1 ,  and are l i s t e d  i n  Table 1. The p l o t t e d  r e s i d u a l s  are 

shown i n  Char t s  4 ,  5, and 6. The r e s idua l  s ca l e  is 0.1 inch equa l s  3 

microns or approximately 2 seconds of a r c  i n  stellar d i r e c t i o n  and t h e  
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method of p lo t t i ng  the res idua ls  w i l l  be explained i n  sect ion 4.4.1. 

cha r t s  of the  p lo t ted  res idua ls  a l so  give the corresponding standard e r ro r  

of un i t  weight f o r  tha t  p l a t e  reduction as quoted from the "single camera 

orientation" program ESSA,  1967). 

The 

Table 1 

ESSA Parameters from "Single Camera Orientat ion Program" f o r  
Computing Plate Residuals ESSA, 1963 

Parameter Plate  2559 Plate 5205 Plate 6132 

Q! (grads) 
0 (grads) 
x (grads) 
c (grads) 
xp (meters) 
yp (meters) 
cx (meters) 
cy (meters) 
K1 
K2 
K3 
K4 
K5 
50, (grads) 
xs (meters) 
ys (meters) 

62.27051 2.471354 
19.28476 36.02114 

162.6365 245.55 31 
.002923602 -.0001349864 

-.000006689202 -.00007452753 
.00008196885 .00001125822 
.3030345 .3034375 
.3030374 .3034346 
.2724793 .1796399 

-19.37803 2.066992 
257.7927 -1171.724 

-.00009683551 .0003342886 
01558277 .002749874 

-.000006689202 -. 00007452753 
.00008196885 .@0001125822 

133.4833 180.7971 

37.97947 
-37.37786 
106.4265 

.00005810139 

.00004536102 

.3032675 

.3032710 

.1861981 

-.0001134127 

-5.094664 
-695.6819 

.0002751480 

.001130124 

-.0001134127 
150.2195 

.000045 36102 

It w i l l  be noted tha t  the author i n  many places r e f e r s  t o  1 x 10 -6 

meters as a micron. This  i s  done with the understanding tha t  t h i s  small 

un i t  of dis tance should properly be referred t o  as a micrometer based on 

a decision made a t  the Thirteenth General Conference on Weights and Mea- 

sures,  Cctober, 1967, i n  Paris. 
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4.4 The Astrometric Reductions a. 

4.4.1 General.--In con t r a s t  t o  the photogrammetric reduction, an 

as t romet r ic  technique has no physical  i n t e r p r e t a t i o n  except the i m p l i c i t  

r e l a t ionsh ip  between the  plane of the  photograph and a plane tangent t o  

the celestial  sphere a t  the po in t  of i n t e r s e c t i o n  of the o p t i c a l  axis and 

the  celestial sphere. The models tested c o n s i s t  of s i x  o r  more cons t an t s  

tha t  are c o e f f i c i e n t s  i n  l i n e a r  o r  higher  order  equat ions r e l a t i n g  ob jec t  

and image space. 

systematic e r r o r  (except i n  the  case of a t r a n s l a t i o n  term), but they are 

These cons tan ts  are not arranged t o  c o r r e c t  a s p e c i f i c  

expected t o  absorb t h e  combination of var ious  systematic e r r o r s  such as  

astronomical r e f r a c t i o n  and annual abe r ra t ion  ( i f  not  added t o  t h e  stars 

before reduction),  e r r o r s  r e s u l t i n g  from improper o r i e n t a t i o n  of t he  tangent 

plane,  and even l e n s  d i s t o r t i o n s  i n  some cases .  Whether o r  not systematic  

e r r o r s a r e  removed remains t o  be seen. A s  mentioned, t he  as t romet r ic  tech- 

niques have been h i s t o r i c a l l y  assoc ia ted  with cameras of long f o c a l  length 

and of narrow angular  f i e l d s .  

been shunned f o r  more advanced photogrammetric techniques. 

reader s h a l l  see, the  as t romet r ic  technique is more simple i n  concept and, 

Therefore,  i n  s a t e l l i t e  t racking  they have 

But  as t h e  

easier t o  apply. I f  comparable accurac ies  could be obtained thus  system- 

a t i c  e r r o r s  removed with an as t romet r ic  reduct ion,  i t s  economical a spec t s  

would make it extremely appealing. 

With these  po in t s  i n  considerat ion,  severa l  common models w i l l  be 

examined. 

as the "variat ion of parameters'' method i n  which for t h i s  problem, the 

The least-squares reduction used i n  a l l  cases is commonly known 

weight matrix is equal t o  the  i d e n t i t y  matrix.  The v a r i a t i o n  of 

. .  
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L = f (x) 
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(4.11) 

where L is the observed quan t i ty  and x represents  t he  unknown q u a n t i t i e s .  

By use  of a t runcated Taylor series expansion, (4.11) i s  linearized and 

used t o  form "observation" equat ions ,  and then "normal" equat ions i n  

which t h e  unknowns are d i f f e r e n t i a l  co r rec t ions  t o  the assumed va lues  of 

the unknowns i n  (4.11) ( t h e  o r i g i n  about which the  expansion is made). 

Because the  method avoids  higher  order  terms i m p l i c i t  i n  the  Taylor series 

expansion, an i t e r a t i v e  technique could genera l ly  be employed t o  ge t  in- 

c reas ingly  b e t t e r  va lues  around the o r i g i n  about which the  expansion takes 

place.  This  information i s  well-known t o  phys ica l  s c i e n t i s t s ,  but it is 

repeated here t o  i n d i c a t e  the au thor ' s  approach. 

of !least-squares has a l s o  been developed i n  t h e  form: 

For example, the method 

(4.12) 

where G (x) equal  t o  zero implies  a set of c o n s t r a i n t s  on the  unknowns. 

The computational method i n  t h i s  case is d i f f e r e n t  and poss ib ly  the resul ts  

more va l id  where appl icable .  Weighting i n  t h i s  l a t t e r  method becomes more 

of a problem, and it is even sometimes f e a s i b l e  t o  weight the known quanti-  

t ies,  thus  t r e a t i n g  them as observables  Fo t i l a ,  1 9 6 1 .  

How does t h i s  relate t o  the problem a t  hand? The as t romet r ic  models 

tested are a l l  of the  form: 
(*I Y d  = f (cy[, q), 

(4.13) 

where xB and yB are observed (measured) coord ina tes ,  6 and q a r e  
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standard coord ina tes  ( func t ions  of r i g h t  ascension and d e c l i n a t i o n  as sub- 

sequent paragraphs w i l l  show), and C is a set of p l a t e  cons t an t s  ( t h e  un- 

knowns). Since a l l  experimentation w i l l  be performed using the  method of 

v a r i a t i o n  of parameters, a l l  q u a n t i t i e s  on the left-hand side of (4.13) 

are regarded as observed q u a n t i t i e s  w i t h  weights of un i ty ,  and those on 

the right-hand side (except  C) are regarded as "known". Since the  accu- 

racy of the catalogue star p o s i t i o n s  is immaterial t o  t h i s  examination 

(although it is extremely important i n  the  o v e r a l l  ques t ion  of sa te l l i te  

t r i angu la t ion ) ,  where poss ib le ,  6 and rl a r e  kept  on the  right-hand side 

of (4.13). This procedure has t o  be changed i n  one p a r t i c u l a r  model as 

w i l l  be seen. While it may be statist ically v a l i d  t o  fo l low a model of 

the form (4.12) where 5 and rl would be weighted on the basis of the cata- 

logue accuracy of the stars' p o s i t i o n s ,  or poss ib ly  magnitude o r  s p e c t r a l  

class, t h i s  would pose more problems f o r  t h i s  i n v e s t i g a t i o n  than it would 

resolve.  On the  o t h e r  hand, astronomers have t r a d i t i o n a l l y  used 5 and rl 

on the  left-hand s i d e  of (4.13) and considered the  measured Coordinates 

as  known. 

inco r rec t  s ince  x and y 

1963, pp. 166-1673 . 

A t  least  f o r  cameras of short  f o c a l  length  (BC-41, t h i s  is  

are sub jec t  t o  s i g n i f i c a n t  random e r r o r s  [Brown, 
B B 

While The Ohio S t a t e  University has adjustment programs a v a i l a b l e ,  

a l l  as t romet r ic  reduct ions are contained i n  one program w r i t t e n  by the  

author .  Based on the model being used i n  the reduct ion appropr ia te  s u b  

rou t ines  generate  the  observa t ion  equat ions ,  the normal equat ions  are 

formed and solved, and t h e  approximate v a l u e s  of the p l a t e  cons t an t s  are 

then corrected, the process  being iterated u n t i l  a spec i f i ed  maximum 
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number of i t e r a t i o n s  is exceeded o r  the co r rec t ions  t o  the p l a t e  cons t an t s  

converge t o  a pre-se t  to le rance .  I n  a l l  the reduct ions t h i s  to l e rance  is  

The var iance  and s tandard e r r o r  of un i t  weight are computed as w e l l  

as the  weights and var iances  of the unknowns and t h e  covariance matrix, 

The residuals i n  p l a t e  coord ina tes  are then  computed, and t h e  ad jus t ed  co- 

o r d i n a t e s  are punched on ca rds  (except i n  Model 5 ) .  The var iance  of u n i t  

weight i s  again computed, using the actual r e s idua l s ,  as a check on the 

adjustment procedure. F i n a l l y ,  i n t e rpo la t ed  d i r e c t i o n s  f o r  unknown stars 

are computed (except i n  Model 2). 

Generation o f  the observat ion equat ions implies  t h a t  values  of - 6f 
6C ' 

i n  terminology of (4.131, are solved f o r  by the computer. 

f o r  - 6f a r e  simple d e r i v a t i v e s  and, t he re fo re ,  w i l l  not  be given here. 
6C 

Their  va lues  should be apparent when the  models are discussed,  

The expressions 

Each star 

genera tes  two observa t ion  equat ions.  

The ad jus ted  p l a t e  coord ina tes  and t h e  measured coord ina tes  are 

then  used t o  p l o t  t he  r e s i d u a l s  on the  IBM 1627 p l o t t e r .  Since t h e  resid- 

u a l s  are too small t o  appear on a reasonable size p l o t ,  they have been 

magnified so t ha t  0.1 inch approximately equals  3 microns. 

of t he  p l o t s  i n  t h i s  r epor t  were about 3 times the i r  size here). Th i s  

same information a p p l i e s  t o  the p l o t s  of the photogrammetric r e s i d u a l s  

a l ready  exhibited . 

(The o r i g i n a l s  

It i s  assumed that  the reader has a basic knowledge of a s t rome t r i c  

theory. However, some r e p e t i t i o n  is necessary t o  understand the author 's  

approach. Detailed d i scuss ions  may be found i n  the re ferences  of Smart, 

Podobed, and Van de Kamp, b u t  t he  o r i g i n  of t h i s  theory is a t t r i b u t e d  t o  
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Br ie f ly ,  the stars are gnomni- Professor H .  H. Turner [Turner, 18935. 

c a l l y  pro jec ted  onto a p lane  that  is  tangent  t o  the c e l e s t i a l  sphere i d e a l l y  

a t  the  poin t  of i n t e r s e c t i o n  of the o p t i c a l  axis of the  t ak ing  camera wi th  

the c e l e s t i a l  sphere. Their coord ina tes  ( 5  on the tangent  plane are 

given i n  a rec tangular  coordinate  system known as  the s tandard coordinate  

system. Increas ing  va lues  of 6 correspond t o  increas ing  va lues  of r i g h t  

ascension and the  axis is d i r ec t ed  toward t h e  nor th  pole .  The r igorous  

formulae f o r  the  p ro jec t ion  are given by Fmart, 1962, pp. 283, 2 8 q :  

(4.14) 

where c11 is  the star's r i g h t  ascension,  6 denotes  the  star's dec l ina t ion ,  

A denotes the  r i g h t  ascension of the po in t  of i n t e r s e c t i o n  of the o p t i c a l  

a x i s  w i t h  t h e  c e l e s t i a l  sphere,  and D is t h e  dec l ina t ion  of the po in t  of 

i n t e r s e c t i o n  of the o p t i c a l  axis with the c e l e s t i a l  sphere. I f  E: and V 

a r e  known f o r  a stellar image, t h e  r i g h t  ascension 

obtained by [Smart, 1962, pp. 284, 284 , 
1-11tanD 
q + t a n D  

Cot 6 COS (Or - A) = 

and dec l ina t ion  may be 

(4.15) 
secD 

n + t a n T ,  
cot 6 sin (or - A) = 

I n  the  s implest  case ,  the photographic p l a t e  is  p a r a l l e l  t o  the  tangent 

plane,  and the s tandard coordinate  system may be superimposed on the photo- 

graphic p l a t e  by applying a s c a l e  f a c t o r  ( f o c a l  length  of camera). This 

d iscuss ion  assumes t h e  plane of the  photograph is f l a t .  

Baker-Nunn camera i n  its o p t i c a l  t racking  i n  which the  f i lm  back-up is 

The SA0 uses  a 

c y l i n d r i c a l  i n  shape. 

E u e l l e r ,  1964, p.  31g. 

Mueller g ives  formulae t o  g e t  4 and Tl f o r  t h i s  case 
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Natura l ly ,  t h i s  simple case is not  achieved because of i r r egu la r -  

i t i e s  i n  the i n t e r n a l  geometry of the camera and because of the  impossi- 

b i l i t y  of f i nd ing  the  t r u e  i n t e r s e c t i o n  of the o p t i c a l  axis with the ce les -  

t i a l  sphere. 

a r e  deal t  with. 

Discussions of the  models w i l l  i n d i c a t e  how t h e s e  problems 

A sho r t  d i scuss ion  about choosing A and D is necessary.  The exac t  

po in t  of contact  of the tangent  plane w i t h  the c e l e s t i a l  sphere is never 

known, so, t he re fo re  it must be approximated w i t h  the best information 

ava i lab le .  While there  are va r ious  methods of doing t h i s ,  the  au tho r  u s e s  

one recommended method i n  a l l  reduct ions  [Mueller, 1964, pp. 311, 3123. 

A stellar image is chosen as c l o s e  t o  the  geometrical  p l a t e  cen te r  as pos- 

sible. The ' ' f i c t i t ious"  ( r e c a l l  the  au thor ' s  intended u s e  of t h i s  word) 

"observed" r i g h t  ascension and dec l ina t ion  of t h i s  star are assigned as 

the  va lues  of A and I) respec t ive ly .  

of the  standard coordinate  system ( the  assumed poin t  of tangency), the 

Because t h i s  image is then t h e  o r i g i n  

o r i g i n  of the  p l a t e  coordinate  system is s h i f t e d  from the f i d u c i a l  cen te r  

t o  t h i s  image by a simple t r a n s l a t i o n  so t h a t  t h e  two o r i g i n s  w i l l  coin- 

c ide.  These o r i g i n s  a r e  not  changed throughout the adjustment. It i s  

assumed t h a t  t h e  as t romet r ic  model w i l l  a d j u s t  f o r  the f a c t  tha t  the two 

o r i g i n s  do n o t  a c t u a l l y  coincide but d i f f e r  by some d i f f e r e n t i a l  amount 

Fueller, 1964, p. 314. 

chosen as the p o i n t s  of tangency by the method j u s t  descr ibed.  However, 

because there are satell i te images on both p l a t e s  nea re r  the geometr ical  

p l a t e  center than these  star images, the s a t e l l i t e  images a r e  used i n  later 

On P l a t e s  2559, and 6132, star images are i n i t i a l l y  

reduct ions as the  o r i g i n s ,  their r i g h t  ascensions and d e c l i n a t i o n s  having 

been computed i n  one of the i n i t i a l  reduct ions.  
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It a l s o  must be observed that the  r i g h t  ascension and d e c l i n a t i o n  

of whatever image is chosen t o  be t h e  o r i g i n  of the coordinate  systems 

w i l l  de f ine  the o r i e n t a t i o n  of the tangent plane w i t h  respec t  t o  the photo- 

graphic plane. I t  w u l d  be d e s i r a b l e  t o  keep the  two p lanes  p a r a l l e l ,  but  

because the t r u e  i n t e r s e c t i o n  of the o p t i c a l  axis with the celestial  sphere 

is unknown, the  approximation by the method descr ibed w i l l  e s t a b l i s h  a 

tangent plane not p a r a l l e l  t o  the plane of t h e  photograph. The au thor  w i l l  

experiment t o  see j u s t  how s e n s i t i v e  t h e  reduct ion by a p a r t i c u l a r  as t ro-  

metr ic  model is t o  t h e  s e l e c t i o n  of the p o i n t  of tangency. 

we make t h e  o r i g i n  of the p l a t e  coordinate  system coinc ide  with the  o r i g i n  

of the standard coord ina te  system does no t  e s t a b l i s h  pa ra l l e l i sm between 

Jus t  because 

the  two planes.  N o  matter where the o r i g i n  of the p l a t e  coordinate  system 

is, the o r i e n t a t i o n  of the photographic plane remains r i g i d .  However, each 

se l ec t ion  of a new po in t  of tangency on the  c e l e s t i a l  sphere w i l l  d e f i n e  a 

new o r i e n t a t i o n  of t h e  tangent plane w i t h  respec t  t o  the  f ixed  o r i e n t a t i o n  

of t he  p l a t e .  I t  w i l l  be shown t h a t  two of t h e  a s t rome t r i c  models t e s t ed  

allow f o r  some non-parallelism. 

c r i t i c a l  i n  another.  

The choice of the  po in t  of tangency is 

The as t romet r ic  models w i l l  now be presented as w e l l  as the r e s u l t s  

of experimentation wi th  them. P l o t s  of residuals w i l l  provide clues as t o  

whether systematic e r r o r s  have been removed and conclusions w i l l  be drawn 

i n  Sect ion 6 .  Standard e r r o r s  of u n i t  weight w i l l  a l s o  be given f o r  each 

reduction. Di rec t ions  f o r  the 21 s a t e l l i t e  images w i l l  be computed where 

poss ib le  using t h e  adjusted p l a t e  cons t an t s  and the  d i f f e rences  between 

the  ESSA r e s u l t s  and t h e  au thor ' s  r e s u l t s  w i l l  be tabula ted .  These 

. _- - 
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d i f f e rences  are computed i n  the  " f i c t i t i o u s  observed'' r i g h t  ascension and 

dec l ina t ion  system, the ESSA apparent s a t e l l i t e  p o s i t i o n s  having been up- 

dated t o  this system with the author 's  updating program, Since t h e  astro-  

metric models are being compared t o  the photogrammetric reduction, the 

ESSA sa te l l i t e  p o s i t i o n s  are considered t h e  standard i n  any comparison o r  

s ta t is t ical  ana lys i s .  

4.4.2 Mod23 1; The P ro jec t ive  Equations.--The p ro jec t ive  equat ions 

are given as, 

(4.16) 

where x and y are the measured p l a t e  coordinates;  A ,  B, C, D, E,  F, a B B 
and b are the  p l a t e  cons t an t s  t o  be determined; and 5 and rl are the 

s tandard coord ina tes  as given by (4.14). A f t e r  adjustment, the equat ions 

used to  ob ta in  standard coord ina tes  f o r  an unknown star are: 

F - E) + YB (B - bc) + (CE - FB = 
-bD) +yB(bA- aB) + (BD - E A  ' 

' = XB (aE- bD) + YB (bA - aB)+ (BD - E$ 

(4.17) 

XB @ - aF) + y ~  (aC - A) + (AF - CD 

Recall t h a t  t h e  adjustment procedure fol lows the model of (4.13). 

The p r o j e c t i v e  equat ions express the p r o j e c t i v i t y  between two planes,  

not  necessa r i ly  p a r a l l e l  Fal ler t ,  196@, pp. 15, 163. 

t h a t  the reduction using Model 1 is not  s e n s i t i v e  t o  the choice of the 

o r i g i n  of the s tandard coordinate  system (point  of tangency) as described 

i n  s e c t i o n  4.4.1. 

This would imply 
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The images t r i e d  as  o r i g i n s  f o r  both the p l a t e  coordinate  system 

and the s tandard coordinate  system are given on the  r e s idua l  p lo t s .  Recal l  

the genera l  r u l e  i n  t h i s  approach is t o  s e l e c t  an image, s h i f t  the measured 

p l a t e  coordinate  o r i g i n  t o  it and use i ts  " f i c t i t i o u s  observed'' r i g h t  ascen- 

s ion  and dec l ina t ion  as A and D r e spec t ive ly ,  the  e q u a t o r i a l  coord ina tes  of 

the po in t  of tangency. However, one w i l l  no t i ce  i n  seve ra l  tests f o r  P l a t e  

from the  ESSA photogrammetric reduct ion are used as the  

851, t he  se l ec t ed  po in t  of tangency f o r  tha t  p l a t e .  

t o  t e s t  t h e  s e n s i t i v i t y  of the  reduct ion  t o  t h e  choice 

n a r i l y  x and y would not  be available. I n  tes ts  
' P  P 

where a satel l i te  image is used as an o r i g i n ,  the ' * f i c t i t i o u s  observed" 

r i g h t  ascension and dec l ina t ion  of t h i s  image a r e  taken from the r e s u l t s  

of a previous a s t rome t r i c  adjustment as mentioned e a r l i e r  and no t  from an 

5205 t h a t  x and y 
P P 

coord ina tes  of S t a r  

This is  done merely 

of o r i g i n s ,  and ord 

agency reduct ion. 

Tes t  1 

Model 1 is appl ied  t o  a l l  three p l a t e s ,  using a l l  stars on the p la t e s .  

Recal l  t h i s  allows 111 cont ro l  p o i n t s  f o r  P l a t e  2559, 114 f o r  5205, and 106 

f o r  6132. Charts 7, 8, and 9 show the r e s idua l  p l o t s  f o r  these reduct ions.  

The standard e r r o r s  of u n i t  weight ( m o l ,  q u i t e  high,  are also given on the  

charts .  The systematic  e f f e c t s  s t i l l  remaining in  the  residuals are q u i t e  

obvious. Radial  d i s t o r t i o n  appears  t o  be the l a r g e s t  cont r ibu tor .  The 

e f f e c t s  of the remaining systematic  e r r o r s  are a l s o  i l l u s t r a t ed  i n  t h e  d i f -  

ferences of the computed satel l i te  p o s i t i o n s  from the  ESSA results.  No- 

where are these more ev ident  than  on Plate 5205 where t h e  sa te l l i t e  images 

extend toward the l i m i t s  of the dec l ina t ion  zone f o r  the photograph. 
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c 

SCALE 
0.1 inch = 3 microns = 2 arc seconds 

CHART 7: PLATE 2559 

COORDINATES 

m 0  = 10.03 microns 

TEST 1 RESIDUALS, PROJECTIVE EQUATIONS APPLIED TO ACTUAL MEASURED 

Stars  837, 853 and S a t e l l i t e  313 used as  or ig ins  with identical  resul ts  
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CHART 81 

SCALE 
0.1 inch = 3 microns = 2 arc  seconds 

PLATE 5205 
TBST 1 RESIDUALS, PROJECTIVE EQUATIONS APPLIED TO ACTUAL MEASURED 

COORDINATES 
Star 851 is or ig in  
mo. = 10.03 microns 
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// 4 
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SCALE 
0.1 inch = 3 microns = 2 arc seconds 

W A R T  9: PLATE 6132 
T E S T 1  RESIDUALS, PROJECTIVE EQUATIONS APPLIED TO ACTUAL MEASURED 

COORDINATES 
Star 854 is o r i g i n  
m = 7.81  microns 0 
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These d i f f e rences  are given i n  Tables 2,  3, and 4. 

I n  Tes t  1, the  o r i g i n  f o r  P l a t e  2559 is changed s e v e r a l  times t o  

test the s e n s i t i v i t y  of the p ro jec t ive  equat ions  t o  the choice  of the  

po in t  of tangency. 

a l l  o the r  r e s u l t s  inc luding  the computed p l a t e  r e s i d u a l s  and satel l i te  

The adjus ted  p l a t e  cons tan ts  i n  each case d i f f e r  but 

d i r e c t i o n s  are i d e n t i c a l  f o r  a l l  o r i g i n s  used. 

choose an image as o r i g i n  as c lose  t o  the geometrical  p l a t e  c e n t e r  as 

poss ib le ,  it is  apparent t h a t  any choice could be constrained dur ing  the  

adjustment and t h a t  no increase  i n  accuracy could be expected by using an 

i t e r a t i o n  technique t o  f i n d  the po in t  of tangency that  best approximates 

t h e  i n t e r s e c t i o n  of t he  t r u e  o p t i c a l  a x i s  with the c e l e s t i a l  sphere. 

While one would want t o  

Tes t  2 

I t  is  desirable t o  know how g r e a t  t he  e f f e c t s  of decenter ing d is -  

t o r t i o n  are i n  regards t o  Model 1. The author 's  program f o r  computing 

photogrammetric r e s i d u a l s  is used t o  remove decenter ing d i s t o r t i o n  from 

the measured coord ina tes  x and y S t i l l  remaining, then,  i n  the measured 
B B' 

coordinates  are radial d i s t o r t i o n  and non-perpendicularity of t h e  comparator 

axis .  The reduct ions a r e  again performed as i n  Tes t  1. The p l o t t e d  resid- 

u a l s  are shown i n  Char t s  10, 11, and 12. The e f f e c t s  of decenter ing d i s -  

t o r t i o n  appear t o  be minimal s ince  the r e s u l t s  of Tes t  2 are almost iden- 

t i c a l  t o  those of Tes t  1. Considering t h i s  f a c t ,  no sa te l l i t e  d i r e c t i o n s  

are computed i n  t h i s  test. 
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Table 2 

PLATE 2559 

Differences of Model 1 Interpolated Posi t ions from ESSA Posi t ions 

Equatorial System 
fo r  21 S a t e l l i t e  Images Computed i n  "Fic t i t ious  Observed" 

NO. ESSA - ESSA - ESSA - 
Test 1 Test 4 Test 5 

126 
143 
16 1 
179 
201 
219 
239 
258 
28 1 
299 
313 
330 
350 
368 
387 
403 
414 
434 
45 2 
47 3 
494 

ls563 
1.575 
1.552 
1.493 
1.372 
1.235 
1.044 
0.833 
0.541 
0.292 
0.094 

-0.440, 
-0.689 
LO. 934 ' 
-1.114 
*1.226 
-1.393, 
-1.497 
0.1 * 559 
-1.550 

-0,153 

Os006 
0.099 
0.170 
0.197 
0.192 
0,163 
0.096 
0.027 

-0.030 
-0.103 
-0.184 
-0.248 
-0.295 
-0.313 
-0.312 
-0.277 
-0.203 

Os146 
0.259 
0.349 
0.407 
0.435 
0.425 
0.380 
0.312 
0.198 
0.094 
0.009 

-0.099 
-0.219 
-0.316 
-0.399 
-0.445 
-0.463 
-0.462 
-0.416 
-0 * 305 
-0.126 

ESSA - ESSA - ESSA - 
Test 1 Test 4 Test 3 

- 3y05 
-2.97 
-2.82 
-2.62 
-2.31 
-2.04 
-1.75 
-1.49 
-1.23 
-1.08 
-1.00 
-0.98 
-1.02 
-1.13 
-1.32 
-1.53 
-1.69 
-2.01 
-2.29 
-2.61 
-2.84 

re 
1.07 
0.73 
0.44 
0.26 
0.12 
0.01 

-0.09 
-0.17 
-0.22 
-0.32 
-0.43 
-0.55 
-0.67 
-0.77 
-0.83 
-0.91 
-0.91 

0:' 9 9 
0.64 
0.36 
0.16 
0.02 

-0.@5 
-0.08 
-0.09 
-0.10 
-0.11 
-0.13 
-0.18 
-0.26 
-0.35 
-0.47 
-0.57 
-0.64 
-0.74 
-0.76 
-0.72 
-0.51 

1s054 Os171 08298 
m *I w 

1.89 0.50 0.38 * 
0.050 -0.C.59 -0,011 -1.89 -0.19 -0.17 ** 

*Mean absolute difference 
**Mean difference 
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Table 3 

PLATE 5205 

Differences of Model 1 Interpolated Posi t ions from ESSA Posi t ions 
fo r  21 S a t e l l i t e  Images Computed i n  "Fic t i t ious  Observed" 

Equatorial System 

RA DPXl 

NO. ESSA - ESSA- ESSA - ESSA - ESSA - ESSA - 
Test  1 Test 4 Test 5 Test 1 Test 4 Test 5 

126 
143 
161 
179 
201 
219 
239 
258 
281 
299 
31 3 
330 
35 0 
368 
387 
403 
414 
434 
452 
47 3 
494 

0?633 
0.758 
0.822 
0.826 
0.772 
0.690 
0.577 
0.455 
0.305 
0.189 
0.105 
0.011 

-0.085 
-0.156 
-0.212 
-0.245 
-0,259 
-0.267 
-0.253 
-0.215 
-0.155 

-Of149 
-0.015 

-0:015 0.077 
0.030 0.105 
0.046 0.103 
0.039 0.080 
0.014 0.039 

-0.011 0.001 
-0.029 -0.026 
-0.048 -0.055 
-0.061 -0.079 
-0.06 3 -0.091 
-0.051 -0.089 
-0.031 -0.075 
-0.010 -0.059 

-0.O15 
0.042 

*? 

7.47 
9.38 

10.64 
11.16 
10.84 
9.91 
8.29 
6.29 
3.48 
1.10 

-0.78 
-3.@4 
-5.56 
-7.61 
-9.43 

-10.63 
-11.26 
-11.90 
-11.89 
-11.13 
-9.54 

*e 
-0.09 

0.65 
0.95 
0.87 
0.45 
0.00 

-0.36 
-0.73 
-0.98 
-0.96 
-0.57 
0.11 
0.78 

n 
-2.12 
-0.26 

1.16 
1.73 ' 

1.85 
1.58 
0.93 ' 

0.29 
-0.21 
-0.76 
-1 23 
-1.41 
-1.23 
-0.73 
-0.18 

1.34 
3.28 

~ - _ _  ---___ 
l? 1* l* 

Os380 05034 Of065 8.1.6 0.58 1.19 * 
0.204 -0.015 -0.012 -0.68 0.01 0.24 ** 
*Mean absolute difference 

**Mean difference 
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Table 4 

PLATE 6132 

Differences of Model 1 Interpolated Posi t ions from ESSA Posi t ions 
for 21 S a t e l l i t e  Images Computed in  "Fic t i t ious  Observed" 

Equatorial System 

NO. ESSA ESSA - ESSA - ESSA - ESSA - ESSA - 
Test 1 Test 4 Test 5 Test 1 T e s t  4 Test 5 

126 
143 
16 1 
179 
201 
219 
2 39 
258 
28 1 
299 
31 3 
330 
350 
368 
38 7 
403 
414 
434 
452 
47 3 
494 

-1?251 Os065 
-1.292 -0.068 
-1.302 0.061 -0.179 
-1.273 -0,044 -0.257 
-1.191 -0.132 -0.311 
-1.086 -0.172 -0.323 
-0.932 -0,184 -0.305 
-0.756 -0.171 -0.262 
-0.508 -0.125 -0.182 
-0.294 -0.075 -0,105 
-0.122 -0.031 -0.041 

0.091 0.024 0.039 
0.338 0.083 0.126 
0.550 0.125 0.192 
0.754 0.148 0.239 
0.905 0.146 0.257 
0.994 0.130 0.254 
1.116 0.064 0.210 
1.180 -0.041 0.123 
1.188 -0.042 
1.119 -0.282 

?* 

-1.94 
-1.83 
-1.64 
-1.40 
-1.04 
-0.74 
-0.41 
-0.20 

0.14 
0.27 
0.33 
0.34 
0.24 
0.09 

-0.16 
-0.42 
-0.61 
-0.98 
-1.30 
-1.63 
-1.84 

I1 

-0.07 
-0.23 
-0.30 
-0.30 
-0.25 
-0.20 
-0.11 
-0.07 
-0.03 
0.00 

-0.01 
-0.02 
-0.04 
-0.05 
-0.04 

0.02 
0.15 

11 

-0.49 
-0.66 
-0.74 
-0.75 
-0.65 
-0.53 
-0.35 
-0.18 
-0.02 

0.16 
0.25 
0.35 
0.42 
0.46 
0.48 
0.51 
0.54 
0.63 
0.79 
1.29 
1.64 

11 

Os869 Of103 Of184 0:'s 3 0.11 6:58 k 
-0.084 -0.011 -0.041 -0.70 -0.09 0.15 ** 
*Mean absolute difference 

**Mean difference 



49 

I‘ 
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SCALE 
0.1 inch = 3 microns = 2 arc seconds 

CHART 10: PLATE 2559 
TEST 2 RESIDUALS, PROJECTIVE EQUATIONS APPLIED AFTER DECENTERING 

DISTORTION I S REMOVED FROM COORDINATES 
Star 853 is  origin 
m = 10.05 microns 0 
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SCALE 
0.1 inch = 3 microns = 2 arc seconds 

CHART 11: PLATE 5205 
TEST 2 RESIDUALS, PROJECTIVE EQUATIONS APPLIED AFTER DECENTERING 

DISTORTION IS REMOVED FROM MEASURED COORDINATES 
Star 851 is or ig in  
mo = 10.35 microns 
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CHART 12: 

SCALE 
0.1 inch = 3 microns = 2 arc seconds 

PLATE 6132 
TEST 2 RESIDUALS, PROJECTIVE EQUATIONS APPLIED AFTER DECENTERING 

DISTORTION I S  REMOVED FROM MEASURED COORDINATES 
Star 854 is o r i g i n  

mo = 7.77 microns 
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Tes t  3 

The photogrammetric r e s i d u a l  program i s  used once more with modifi- 

ca t ions ,  t h i s  t i m e  t o  remove a l l  d i s t o r t i o n s  ( including non-perpendicu- 

l a r i t y ,  although t h i s  e f f e c t  is almost neg l ig ib l e )  from the  measured co- 

ord ina tes .  The coord ina tes  i n  t h i s  form compare to  the t r u e  x and y i n  

equat ion (4.9). 

p l o t s  a r e  shown i n  Charts 13, 14,  and 15. Compare these t o  the p lo t t ed  

r e s i d u a l s  of theGphotogrammetr3.c reduction. 

e r r o r s  of u n i t  weight. 

s ince  i t  is evident  t ha t  the  r e s u l t s  w i l l  be comparable t o  the ESSA r e s u l t s  

and s ince  random e r r o r s  appear t o  be the  only ones remaining a f t e r  adjust-  

ment. Brown states that s ince  only s i x  independent parameters are required 

to  def ine  an undis tor ted  c e n t r a l  p ro j ec t ion ,  the e i g h t  parameters i n  (4.16) 

The reduct ions  are performed as i n  Tes t  1. The r e s idua l  

Also no t i ce  t h e  standard 

No satel l i te  d i r e c t i o n s  are computed i n  t h i s  t e s t  

must be constrained i n  a fash ion  t h a t  he s p e c i f i e s  [Brown, 1963, pp. 165, 

1663. As he observes,  however, t h i s  is not  done in  p rac t i ce  and the re- 

s u l t s  of Tes t  3 support  t h e  f a c t  t h a t  the c o n s t r a i n t s  are not necessary. 

The quest ion now arises: How f a r  ou t  from the o r i g i n  can the  reduc- 

t i o n  be performed and the results s t i l l  be r e l a t i v e l y  f r e e  from the system- 

a t ic  e f f e c t s  of l e n s  d i s t o r t i o n s ?  Charts  16 ,  17, and 18 give some indica- 

t ion.  

t r a c t i n g  t h e  a c t u a l  measured coord ina tes  from the ad jus ted  coordinates  

t h a t  were obtained i n  Tes t  3. 

t o r t i o n s  a f f e c t  t h e  c e n t r a l  p ro j ec t ion  (mainly radial  d i s t o r t i o n ) .  

These a r e  a resul t  of p l o t t i n g  residuals t h a t  are computed by sub- 

I n  essence,  they demonstrate how l e n s  d i s -  

One can 

see radial  d i s t o r t i o n  cl imbs t o  magnitudes of 80 microns o r  more near  the  

o u t e r  reaches of the p l a t e .  The same p i c t u r e  can be presented ana ly t i ca l ly .  
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0.1 inch = 3 microns = 2 arc seconds 

CHART 13: PLATE 2559 
T E S T  3 RESIDUALS, PROJECTIVE EQUATIONS A P P L I E D  AFTZR ALL LENS 

DISTORTIONS ARE REMOVED FROM MEASURED COORDINATES 
Sate l l i t e  313 is o r i g i n  

mo = 3.06 microns 
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CHART 14: PLATE 5205 

DISTORTIONS ARE REMOVED FROM FiEASURED COORDINATES 
Star 851 is origin 
mo = 3.34 microns 

T E S T  3 RESIDUALS, PROJECTIVE EQUATIONS A P P L I E D  AFTER ALL LENS 
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CHART 15: PLATE 6132 
TEST 3 RESIDUALS, PROJECTIVE EQUATIONS APPLIED AFTER ALL LENS 

DISTORTIONS ARE REMOVED FROM MEASURED COORDINATES 
S a t e l l i t e  313 i s  or ig in  

m = 2.62 microns 0 
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CHART 16: PLATE 2559 
DIFFERENCES BETWEEN UNDISTORTED STAR IMAGES AND OBSERVED IMAGES 

JZOTTED AS RESIDUALS 
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SCALE 
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PLATE 5205 
DIFFERENCES BETWEEN UNDTSTORTED STAR IMAGES 
AND OBSERVED IMAGES PLOTTED AS RESIDUALS 
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I" 

SCALE 
0.1 inch = 3 microns = 2 arc seconds 

CHART 18: PLATE 6132 
DIFFERENCES BETWEEN UNDISTORTED STAR IMAGES 

AND OBSERVED IMAGES PLOTTED AS RESIDUALS 
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Suppose the photogrammetric model is  expanded i n t o  polynomials i n  

x and y. The f i n a l  expressions are: 

where xB and yB are the measured coord ina tes  as  usual  and x and y a r e  the 

undis tor ted  coord ina tes  as i n  (4.9). Assume that t h i s  model exac t ly  des- 

c r i b e s  the phys ica l  s i t u a t i o n  and as such is absolu te ly  rigorous.  

know t h i s  i s  not  t r u e  because i t  represents  only a hypothe t ica l ,  al though 

We 

apparent ly  a good one, es t imate  of the  t r u e  s i t u a t i o n  no t  accounting f o r  

the mult i tude of causes  t h a t  a l t e r  t he  c e n t r a l  p ro j ec t ion ,  however insig-  

n i f i c a n t .  

From inves t iga t ion  of the previous tes t ,  we conclude tha t  equat ions 

(4.16) are r igorous  ( i n  the  sense of (4.18))only so fa r  as an undis tor ted  

c e n t r a l  p ro j ec t ion  w i l l  permit. 

s i d e  of (4.16) a c t u a l l y  compare t o  x and y i n  (4.18). 

Therefore ,  xB and yB on the  left-hand 
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For ease of ana lys i s ,  assume now tha t  an image is pro jec ted ,  w i t h -  

out  d i s t o r t i o n s ,  on to  the  x axis. I n  t h i s  case the  f i r s t  equation i n  

(4.18 1 becomes: 

xB = -k x2 (3% cos PT) -t X3 (Kl) + X* (3Ks cos 4s) 

+X5 (Kz) + X7 (KJ. 
(4.19) 

Considering the  d i scuss ion  i n  the  last paragraph, the e r r o r  committed 

by using t h e  p ro jec t ive  equat ions  is given by, 

X2 (3K4 COS CP,) 4- X3 (&) X4 (3& COS (PT) + Xs &) f X7 (Kd. (4.20) 

I f  the parameters of Table 1 are s u b s t i t u t e d  here ,  it becomes ev ident  t h a t  

the  e r r o r  is comprised most ly  of the  x3 (K1) term i n  (4.201, t h i s  also 

being the l a r g e s t  f a c t o r  i n  the radial d i s t o r t i o n  funct ion.  

2559, (4.20) equa l s  roughly 16 microns a t  a r a d i a l  d i s t ance  of 4 centi- 

On P l a t e  

meters. I t  is somewhat less on the o t h e r  two p l a t e s .  I n  a reduct ion 

th i s  author assumes that maximum radial  e f f e c t s  of about  6 or  7 microns 

could be nrandomlyn d i s t r i b u t e d  using (4.16). Any r e s idua l  e r r o r s  remain- 

ing a f t e r  the reduct ion would be no g r e a t e r  i n  magnitude than the expected 

random p l a t e  coordinate  e r r o r  of around 3 microns that t h e  photogrammetric 

reduction i n d i c a t e s  i s  t o  be expected (again,  assuming model (4.18) is 

absolute).  Th i s  leads t o  the fol lowing two tests: 

Test  4 

On each p l a t e  a f i e l d  of stars 3.4 cent imeters  i n  r ad ius  from the  

geometrical  c e n t e r  is used; 3.4 centimeters is an a r b i t r a r y  choice which 

a l lows  enough stars t o  be used to  have a v a l i d  adjustment. Also,  a t  about 

t h i s  d i s tance  o r  somewhat less, the radial  d i s t o r t i o n  e f f e c t s  become 
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l a r g e r  than  the 6 o r  7 micron l i m i t  j u s t  imposed. 

are shown i n  Charts 19, 20, and 21. 

The residual p l o t s  

The decreased magnitude of the resid- 

u a l s  and the low standard e r r o r s  of u n i t  weight are testimony that the  

p ro jec t ive  equat ions  are app l i cab le  i n  t h i s  area without pre-correct ing 

the  measured coord ina tes  f o r  l e n s  d i s t o r t i o n s .  

Test  5 

To prove t h a t  t h e  area used i n  Test  4 should not  be exdeeded when 

applying the p ro jec t ive  equat ions without  pre-correct ions,  stars out  t o  

4 cent imeters  are used i n  the reduct ion.  Residual  p l o t s  are shown i n  

Charts 22, 23, and 24. Four centimekers is used so t h a t  enough add i t iona l  

stars ly ing  beyond 3.4 cent imeters  can be employed to incorpora te  the 

l a r g e r  radial  d i s t o r t i o n  e f f e c t s  t h a t  the a n a l y s i s  above shows exis t  a t  

t h i s  d is tance .  

las t  test  and the  s tandard e r r o r s  of un i t  weight prove t h i s .  

The p l o t t e d  residuals are gene ra l ly  l a r g e r  than i n  the 

I t  must be remembered t h a t  each camera w i l l  have its own d i s t o r t i o n  

c h a r a c t e r i s t i c s .  Therefore,  the  p ro jec t ive  equat ions cannot be appl ied  

equal ly  w e l l  f o r  the  same areas on d i f f e r e n t  p l a t e s .  
1 

However, gene ra l  

conclusions w i l l ’ b e  given i n  Sec t ion  6. 
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CHART 19: PLATE 2559 

WITHIN 3.4 CENTIMETERS OF THE PLATE CENTER 
Satellite 313 i s  o r i g i n  

TEST 4 RESIDUALS, PROJECTIVE EQUATIONS APPLIED TO STARS 

mo = 2.82 microns 
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PLATE 5205 
TEST 4 RESIDUALS, PROJECTIVE EQUATIONS APPLIED TO STARS 

WITHIN 3.4 CENTIMET2RS OF THE W T E  CENTER 
Star 851 is or ig in  
m = 2.96 microns 

0 
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CHART 21: PLATE 6132 SCALE 
0.1 inch = 3 microns = 2 arc seconds 

TEST 4 RESIDUALS, PROJECTIVE EQUATIONS APPLIED M STARS 
WITHIN 3 .4  CENTIMETERS OF THE PLATE CENTER 

Satellite 313 is origin 
m = 2.37 microns 0 
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0.1 inch = 3 microns = 2 arc seconds 

CHART 22: PLATE 2559 
TEST 5 RESIDUALS, PROJECTIVE EQUATIONS APPLIED TO STARS 

WITHIN 4 CmTIA.IETERS OF THE PLATE CENTER 
S a t e l l i t e  313 is  or ig in  

m = 3.96 microns 0 
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CHART 23: PLATE 5205 
TEST 5 RESIDUALS, PROJECTIVE EQUATIONS APPLIED TO STARS 

WITHIN 4 CENTIMETERS OF THE PLATE.CEN"ER 
Star 851 is origin 
m = 3.08 microns 

0 
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SCALE 
0.1 inch = 3 microns = 2 arc seconds 

CHART 24: PLATE 6132 
TEST 5 RESIDUALS, PROJECTIVE EQUATIONS APPLIED XI STARS 

WITHIN 4 CENTIMETERS OF ?HE PLATE CENTER 
S a t e l l i t e  313 is o r i g i n  

1ll0 = 3 .24  microns 
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4.4.3 Models 2 and 5 :  The '*Long" Turner 's  Xethod.--If t he  denom- 

i n i t o r  is divided i n t o  the  numerator i n  the  p ro jec t ive  equat ions,  a poly- 

nortlial occurs  i n  6 a n d v  . Truncation of the polynomial r e s u l t s  i n  

Models 2 and 5 which are given by: 

Model 2, 

Model 5 

t $ = A + B x B + C y  + D x 2 + E x y  + F y B  2 +Gx 3 
I3 B B B  B 

2 2 3 + HXB YB '%YB + QYB 9 (4.22) 

Model 5 is t h e  same as Model 2, only the  r o l e s  of xB, yB and 4 , q 
have been reversed. Model 2 i s  used to  obta in  a p l o t  of the p l a t e  co- 

o rd ina te  res idua ls .  Model 5 is used to  o b t a i n  d i r e c t i o n s  f o r  t h e  satel- 

l i t e  s ince  t h i s  would be impossible using Model 2. 

t h a t  would be used i n  p r a c t i c e  although 6 
observed q u a n t i t i e s  u n l e s s  another  adjustment technique is  used. 

Model 5 is the form 

and Q must be regarded as t h e  

The formulation of t hese  models i s  a t t r i b u t e d  t o  H. H. Turner 

Furne r ,  189q. Podobed and Smart e l abora t e  on the purpose of including 

the var ious l i n e a r  and higher  order  terms. 

formation ( t h i s  w i l l  comprise Model 3) i s  required by non-coincidence of 

The l i n e a r  p a r t  of t h e  trans- 



e 

69 

the s tandard coordinate  o r i g i n  and the p l a t e  coordinate  o r i g i n  ( s e l e c t i o n  

of the same image f o r  both o r i g i n s  should reduce t h i s ) ,  the  r o t a t i o n  of 

the two systems wi th  respec t  t o  each o t h e r ,  the angle  between the  p l a t e  

coordinate  axes not  equal  t o  90 degrees,  and scales being d i f f e r e n t  along 

the p l a t e  coordinate  axes. 

en ta t ion  of t h e  p l a t e  i n  t h e  comparator and of  t he  comparator i t s e l f  [Pod- 

obed, 1965, pp. 184, l S q ,  [Smart, 1962, pp. 289-29g . The second order  

terms are necessary because t h e  o p t i c a l  axis is not  perpendicular  t o  the 

plane of the p l a t e  [Podobed, 1965, pp. 184, 183, CSmart, 1962, p. 2911 . 
I f  the stars have no t  been updated f o r  annual abe r ra t ion  and r e f r a c t i o n  

These e r r o r s  are p a r t l y  a r e s u l t  of t h e  o r i -  

as is t h e  usual  case i n  astronomy, the  l i n e a r  p l u s  second order  terms also 

allow f o r  d i f f e r e n t i a l  abe r ra t ion  and r e f r a c t i o n  e f f e c t s .  Although not  

intended i n  t h e  o r i g i n a l  formulat ion,  the h igher  order  terms w i l l  a l s o  ab- 

sorb  some of the l e n s  d i s t o r t i o n  e f f e c t s  [Berbert, e t .  al., 1 9 6 q .  This 

can be shown by comparing (4.22)to (4.18) and making a term-wise ana lys i s .  

How many higher  o rde r  terms are employed i n  equat ions  of the form 

of (4.21) and (4.22) is a func t ion  of t h e  angular f i e l d  and t h e  camera 

being used. Since the  ''long'' Turner 's  method is a c t u a l l y  an expansion 

of the p r o j e c t i v e  equat ions ,  one might wonder why the p ro jec t ive  equa- 

t i o n s  are not  used more i n  p rac t i ce  o r  used exc lus ive ly  s ince  any Turner 's  

method is a t runca t ion  of t h i s  expansion. The answer i s  i n  the  f a c t  t ha t  

the p ro jec t ive  equat ions  employ only e i g h t  unknowns. Therefore,  t h e  

c o e f f i c i e n t s  i n  t h e  polynomial t h a t  resu l t  from the  expansion are con- 

s t r a ined .  

form of (4.21) and (4.22) r e s u l t  having 20 unique unknowns tha t  are f r e e  

B u t  i f  these  c o n s t r a i n t s  are l i f t e d ,  then  equat ions of t h e  
c 
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t o  absorb e f f e c t s  of l e n s  d i s t o r t i o n s  and any o t h e r  e f f e c t s  not spec i f i -  

c a l l y  modeled [Brown, 1966, p. 3g. This poin t  w i l l  become apparent i n  

the r e s u l t s  obtained w i t h  (4.21) and (4.22). 

For reduct ion of the Minitrack as t rographic  p l a t e s  (MmS) , NASA 

developed equat ions of 

6 = A 4 BxB .+ Cy, 

the form [Berbert, e t  al., 19623: 

4 DxByB ExB 2 + P% (x, 2 4 Y B 2 L  

(4.23) 

= A t 4 B'xB 4 C e t  yB 4 D t %yB 4 E'yB + F t y B  (5 2 4 yB 2 1. 

The f i e l d  covered was 11 degrees by 14 degrees. Duane Brown shows 

addi t iona l  terms must be added t o  (4 .23)  i f  t he  as t romet r ic  method 

t h a t  

is 

t o  be used f o r  GEOS app l i ca t ion  prom, 196g, 

equat ions t o  those  given as (4.21) and (4 .22)  with t h e  recommendation 

He f i n a l l y  trims h i s  

t h a t  t he  fol lowing s t e p s  be taken before app l i ca t ion  [Brown, 1966, 

p. 473: 

A. The p l a t e  coord ina tes  should be cor rec ted  f o r  l e n s  
d i s t o r t i o n s  p r i o r  t o  reduction. 

E?. S t e l l a r  coordinates  should be cor rec ted  f o r  as t ro-  
nomical re f reac t ion .  

Severa l  items must be observed a t  t h i s  point :  (1) Brown is  d i s -  

cussing the  Minitrack system and not a BC-4 camera; (2) recommendation 

B h a s  been followed by t h e  author but not A. However, t h e  author  f e e l s  

t h a t  no more terms should be included i n  (4.22) even i f  l e n s  d i s t o r t i o n  

co r rec t ions  are not made p r i o r  t o  reduction. 

already and any.more make i t  less economical than t h e  photogrammetric 

reduction. 

This model has 20 unknowns 

Moreover, i f  t he  p l a t e  coordinates  are t o  be cor rec ted  fo r  
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l e n s  d i s t o r t i o n s  p r i o r  t o  reduction, the  p ro jec t ive  equations would be 

a better choice judging from the results obtained i n  Section 4.4.2. 

Cha r t s  26, 26, and 27 show the  r e s idua l  p l o t s  when applying (4.21) 

t o  t h e  e n t i r e  p l a t e  area. 

magnitude t h e  r e s i d u a l s  of the photogrammetric reduction. 

a l so  give standard e r r o r s  of u n i t  weight, which are higher  than desired, 

and the  coordinate o r i g i n s  used. Table 5 g i v e s  t h e  d i f f e rences  between 

the ESSA satel l i te  d i r e c t i o n s  and the  satel l i te  d i r e c t i o n s  obtained using 

equation (4.22). 

These p l o t s  are approaching i n  randomness and 

The charts 

When d i f f e r e n t  images are used as coordinate  o r i g i n s ,  t h e  r e s idua l s  

and satel l i te  d i r e c t i o n s  d i f f e r  s l i g h t l y  each. t ime b u t  these  d i f f e rences  

are ins ign i f i can t .  This  was found t o  be t h e  case when NASA experimented 

with (4.23). 

s h i f t e d  seve ra l  cen t imeters  and its r i g h t  ascension and dec l ina t ion  

var ied  by more than a degree without a f f e c t i n g  the  f i n a l  r e s u l t s  [Berbert, 

et .  al, 1962). 

o rder  terms. 

I n  tha t  examination it w a s  noticed t h a t  t he  o r i g i n  could be 

This is most l i k e l y  due to  t h e  inc lus ion  of the second 
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0.1 inch = 3 microns = 2 arc seconds 

CHART 25: PLATE 2559 
RES'IDUALS AFTER REDUCTION WITH "HE LONG TURNER'S METHOD 

S a t e l l i t e  313 and Star 837 used as  or ig ins  with 
comparable r e s u l t s  
no = 3.80 microns 
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PLATE 5205 CHART 26: 
RESIDUALS AFTER REDUCTION WITH THE LONG TURNER'S MFiTHOD 

Star 851 is o r i g i n  
no = 4.19 microns 
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CHART 27: PLATE 6132 
RESIDUALS AFTER REDUCTION WITH THE LONG TURNER'S METHOD 

S a t e l l i t e  313 and Star  854 used as  or ig ins  
with comparable r e s u l t s  

no = 3.39 microns 

w 
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Table 5 

ALL PLATES 

Differences of Model 5 Interpolated Posi t ions from ESSA Posi t ions 
for 21 S a t e l l i t e  Images Computed i n  "Fic t i t ious  Observed" 

Equatorial  System 

RA (ESSA-Model 5 )  DEC 

No. 
II 

126 
143 
161 
179 
201 
219 
239 
258 
281 
299 
313 
330 
350 
368 
38 7 
403 
414 
434 
452 
473 
494 ' 

2559 

0?288 
0.323 
0.347 
0.356 
0.346 
0,320 
0.273 
0.215 
0.125 
0.046 

-0.017 
-0,097 
-0.187 
-0.262 
-0,329 
-0.372 
-0.395 
-0.416 
-0.411 
-0.376 
-0.308 

- 5205 - 
os070 
0.132 
0.180 
0.208 
0.220 
0.212 
0.193 
0.167 
0.132 
0,101 
0.079 
0.053 
0.027 
0.006 
-0.009 
-0.019 
-0.023 
-0.025 
-0.020 
-0.008 
0.008 

6132 

-Of218 
-0.259 
-0.290 
-0.308 
-0.311 
-0,298 
-0.266 
-0.224 
-0.156 
-0.094 
-0.043 

0.022 
0.096 
0.158 
0.216 
0.256 
0.277 
0.299 
0.299 
0.276 
0.225 

- 2559 

-0.59 
-0.67 
-0.72 
-0.74 
-0,70 
-0.64 
-0.56 
-0.48 
-0.38 
-0.31 
-0.26 
-0.23 
-0.21 
-0.22 
-0.25 
-0.30 
-0.33 
-0.40 
-0.45 
-0.50 
-0.50 

..111 

** 
5205 

t a  

-0.54 
0.21 
0.86 
1.34 
1.64 
1.68 
1.54 
1.26 
0.78 
0.34 

-0.01 
-0.44 
-0.'90 
-1.26 
-1.53 
-1.66 
-1.70 
-1.61 
-1.37 
-0.89 
-0.27 

- 6132 

0y06 
-0.04 
-0.10 
-0.13 
-0.10 
-0.04 

0.04 
0.12 
0.23 
0.30 
0.35 
0.40 
0.44 
0.45 
0.46 
0.45 
0.45 
0.45 
0.48 
0.53 
0.64 

Ils 

Of276 0?090 0 9 1 9  Oy45 .I 1:)04 0:30 * 
-0.025 0.080 -0.016 -0.45 -0.12 0.26 ** 
*Mean absolute difference 

**Mean difference 

w 
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4.4.4. Model 3: The"Short" Turner 's  Method.--If the l i n e a r  terms 

are r e t a ined  i n  equat ion (4.21) and the h igher  order  terms dropped, Model 

3 r e s u l t s ,  which i s  given by, 

X B = = + 3 + c ,  
yB =D[+Ecfl+F. (4.24) 

Satel l i te  d i r e c t i o n s  can be computed by, 

By - EX 4 (CE - BF) 
(BD - AE) 

R 5 =  , 

(RD - AE) 

This  model has  probably been used more than any o ther  by astronomers 

s ince  Turner f i r s t  introduced the  idea. Its h i s t o r i c a l  app l i ca t ion  has 

been l imi t ed  t o  areas near  t he  o p t i c a l  axis on very long f o c a l  length  

cameras. (The author 's  app l i ca t ion  of (4.24) t o  the  e n t i r e  p l a t e  produces 

d i s a s t r o u s  r e s u l t s  not given here.) 

the  a f f i n e  t ransformation i n  (4.24) a l lows f o r  d i f f e rences  i n  scale i n  

As discussed i n  the p r a e d i n g  s e c t i o n ,  

d i f f e r e n t  d i r e c t i o n s ,  non-coincidence of t h e  o r i g i n s  of t h e  two coordinate  

systems, non-perpendicularity of the p l a t e  coordinate  axes and a r o t a t i o n  

of one system with r e spec t  t o  the o the r .  The u s e  of (4.24) implies  t h a t  

t he  photographic plane is p a r a l l e l  t o  the  tangent  plane on the  celestial 

sphere. I t  is therefore  suggested that  choice of the po in t  of tangency 

is c r i t i c a l .  

To f i n d  the a rea  where (4.24) may be appl ied  with good r e s u l t s ,  

t he  following empir ical  approach i s  taken. 

ous (the results of the las t  sec t ion  al low t h i s  assumption). I f  the 

Assume t h a t  Model 2 is  r igor-  
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s i g n i f i c a n t  terms a r e  kept i n  (4.21) a f t e r  the  adjustment,  t he  fol lowing 

equat ions def ine  t h e  t ransformations on each plate:  

P l a t e  2559 

& = 0.285 - 0.117 + 0.0008752 - 0.00295V + o.OOll~~, 

YE = 0.115 + 0.287 + 0.0002952 - 0.000195~- 0.0026~~; (4.26) 

P l a t e  5205 

% = 0.035 

YE = 0.0495 - 0.3m 
- 0.04q + 0.002052 + 0.001257 - 0.00028V2, 

(4.27) 
+ 0.000385Q 0.0023& + 0.001q2; 

P l a t e  6132 

Q = 0.0465 - 0.3m - 0.0001952 + O.O0089[Q + 0.001q2, 

YE .= 0.305 + 0.04w- 0.0010[2 - 0.00115~ -0.00017~~. 
(4.28) 

I n  a prel iminary adjustment using Model 3 and stars i n  a confined area 

of rad ius  about 2.5 cent imeters ,  t he  following empir ica l  r e l a t i o n s h i p s  

are found (d is regard ing  t h e  t r a n s l a t i o n  term): 

P l a t e  2559 

% = 0.285 - O.lI~, 
Ye = 0.116 + 0.28~; 

P l a t e  5205 

X, = 0.305 - O.O4W, 

YE = 0.0495- 0.3Oq; 

P l a t e  6132 

Xe = 0.04g - 0.3m, 
YE = 0.305 + 0.04%. 

(4.2 9) 

(4. 39  

(4.31) 
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It is evident  t h a t  the  maximum magnitude of the neglected terms is on 

the order  of 0.0029 6 Yj f o r  P l a t e  2559, 0.0023 6 V f o r  P l a t e  5205, and 

0.0011 5 Yj f o r  P l a t e  6132. I f  the e r r o r  committed i n  using Model 3 is 

t o  be l-ess than 3 microns, the usable a r e a  appears t o  have a r ad ius  of 

about 1.5 cent imeters  f o r  P l a t e  2559, 1.7 cent imeters  fo r  P l a t e  5205, 

and 2.2 cent imeters  f o r  P l a t e  6132. 

l e t t i n g  6 equal  7 and s e t t i n g  the maximum e r r o r  terms given above equal 

t o  3 microns. The r e s u l t i n g  equations are solved f o r  6 and 77 and'multi- . 

p l i e d  by the  f o c a l  l eng th  t o  g e t  

These f i g u r e s  a r e  a r r ived  a t  by 

6 and Yj i n  t h e  sca l e  of the photograph. 

Since 5 equa l s  '? , e i t h e r  one times J2 gives  t h e  r a d i a l  d i s tance  from 

t h e  o r ig in ,  

poss ib le  t o  go out  f a r t h e r  from the o r i g i n  i n  c e r t a i n  d i r e c t i o n s  but t h a t  

t h e  above procedure g ives  the l a r g e s t  r a d i a l  dis tance where the e r r o r  

should be minimal i n  a l l  d i r ec t ions .  

By examining (4.26) through (4.28) one can see t h a t  it i s  

Test  1 

Cer t a in  stars i n  a reduced a rea  around the  p l a t e  c e n t e r  are se l ec t ed  

on each p l a t e  f o r  t h e  reduction. 

ava i l ab le  are used. That is, sa te l l i t e  313 on 2559 and 6132, and s tar  851 

on 5205. Then, star 837 is used as  t h e  o r i g i n  on 2559 and star 854 on 

6132 (Origin 2). There i s  a remarkable d i f fe rence  i n  results. The reason 

f o r  t h i s  is a t t r i b u t e d  t o  the f a c t  t h a t  with Model 3,  any choice of o r ig in  

t h a t  is  obviously more than a d i f f e r e n t i a l  dis tance from the t r u e  o p t i c a l  

cen te r  e s t a b l i s h e s  a tangent plane on the celestial sphere t h a t  i s  appre- 

c i ab ly  not  p a r a l l e l  t o  t he  photographic plane. The p lanes  t h e o r e t i c a l l y  

I n i t i a l l y  t h e  b e s t  o r i g i n s  (Origin 1) 
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should be p a r a l l e l .  

P l a t e  2559, 2.8 cent imeters ;  P l a t e  5205, 2.8 cent imeters ;  P l a t e  6132, 

The r a d i i  f o r  the  reduced a r e a s  a r e  as follows: 

2.2 cent imeters .  

The resul ts  f o r  

f a c t ,  i t  had been pred 

P l a t e  6132 are acceptable  (with Or ig in  1). I n  

c ted  f o r  t h i s  p l a t e  t h a t  stars out  t o  2.2 cen t i -  

meters could be used without introducing apprec iab le  e r r o r  i n  the  results. 

The o t h e r  two p l a t e s  e x h i b i t  bad r e s u l t s  as expected. Char t s  28, 29, and 

30 show the  residuals f o r  Test  1 using the  bes t  ava i l ab le  o r ig ins .  

31 and 32 are the resu l t  of changing o r i g i n s  on P l a t e s  2559 and 6132. 

standard e r r o r s  of u n i t  weight a r e  a l s o  given on t h e  cha r t s .  

Char t s  

The 

T e s t  2 

S t a r s  as c l o s e  as poss ib l e  t o  t h e  p l a t e  cen te r  a r e  se l ec t ed  f o r  

the  reduct ion.  Char t s  33, 34, and 35 show t h e  r e s idua l  p l o t s .  The re- 

s u l t s  f o r  P l a t e  5205 a r e  not very encouraging. 

l imi t ing  the  p l a t e  area, the  r e s u l t i n g  l i m i t a t i o n  on the  number of  star 

images ava i l ab le  hampers the a b i l i t y  of the reduct ion t o  leave only random 

It would seem t h a t  i n  

e r r o r s  i n  the  ad jus ted  p l a t e  coordinates .  

Differences of the  s a t e l l i t e  d i r e c t i o n s  from those of ESSA are 

given i n  Table 6 .  

the  ESSA r e s u l t s  and t h e  Model 3 r e s u l t s .  

There is a not iceable  systematic  d i f f e rence  between 
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SCALE 
0.1 inch = 3 microns = 2 arc seconds 

CHART 28: PLATE 2559 

WITHIN 2.8 CENTIMETERS OF THE PLATE CENTER 
Satellite 313 is origin 

mo = 5.80 microns 

TEST 1 RESIDUALS, SHORT TURNER'S METHOD APPLIED TO STARS 
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SCALE 
0.1 inch = 3 microns = 2 arc  seconds 

CHART 29: KATE 5205 

WITHIN 2.8 CENTIMJ?TERS OF THE PLATE CENTER 

mo = 5.56  microns 

TEST 1 RESIDUALS, SHORT TURNER'S METHOD APPLIED M STARS 

Star 851 is the origin 
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P 

SCALE 
0.1 inch = 3 microns = 2 arc seconds 

CHART 30: PLATE 6132 
TEST 1 RESIDUALS, SHORT TURNER'S METHOD APPLIED TO STARS 

WITHIN 2.2 CENTIMETERS OF THE PLATE CENTER 
S a t e l l i t e  313 ,is origin 

m = 2.59 microns 0 
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SCALE 
0.1 inch = 3 microns = 2 arc seconds 

CHART 31: PLATE 2559 
TEST 1 RESIDUALS, SHORT TURNER'S METHOD APPLIED TO STARS 

Star 837 is origin 
m = 1 3 . 9 3  microns 

WITHIN 2 . 8  f33l"IM€!TERS OF THE PLATE CENTER 

0 
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SCALE 
0.1 inch = 3 microns = 2 arc seconds 

CHART 32: PLATE 6132 
TEST 1 RESIDUALS, SHORT TURNER'S METHOD APPLIED M STARS 

WITHIN 2.2 CENTIMETERS OF THE PLATE CENTER 
Star 854 is  o r i g i n  
m = 11.19 microns 

0 



SCALE 
0.1 inch = 3 microns = 2 a r c  seconds 

CHART 33: PLATE 2559 
TEST 2 RESIDUALS, SHORT TURNER'S MIXHOD APPLIED M STARS 

AS CLOSE TO PLATE CENTER A$ POSSIBLE 
Satell i te 313 is o r i g i n  

m = 2.24 microns 
0 
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SCALE 
0.1 inch = 3 microns = 2 arc seconds 

CHART 34: PLATE 5205 
TEST 2 RESIDUALS, SHORT TURNER'S METHOD APPLIED TO STARS 

AS CLOSE TO PLATE CENTER AS POSSIBLE 
Star 851 is or ig in  
m = 3.69 microns 0 
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SCALE 
0.1 inch = 3 microns = 2 arc second< 

CHART 35: PLATE 6132 
TEST 2 RESIDUALS, SHORT TURNER'S METHOD APPLIED TO STARS 

AS CLOSE M PLATE CENTER AS POSSIBLE 
S a t e l l i t e  313 is origin 

mo = 3.04 microns 
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Table 6 

Differences of Models Interpolated Posi t ions from ESSA Posi t ions 
f o r  21 S a t e l l i t e  Images Computed i n  "F ic t i t i ous  Observed" 

Equatorial System 

No. ESSA - ESSA - PLATE ESSA - ESSA - 
Test 1 Test 2 2559 - - - 
S 

239 -0.149 
258 
281 
299 
31 3 
330 
35 0 
368 
38 7 

-0.051 
0.008 
0.017 
0.005 -0.119 

-0,031 -0.112 
-0.093 -0.139 
-0.163 -0.193 
-0,242 

S 

403 -0.306 
O;slO6 0%41 

Test 2 
CI- 

Test 1 
-0.70 
uII"- 

-1.24 
-1.80 

-2.46 -5.27 
-2.80 -5.98 
-3.19 -0.67 
-3.56 1.60 
-3.95 

-2.18 ?t 

- -4.31 
2Y62 3.38* 

-0.100 -0.141 -2.62 -2.58** 
PLATE 
5205 

258 0.108 -2.08 
28 1 0.207 0.39 
299 0.224 -0.082 1.27 1.36 
31 3 0.211 -0.108 1.40 0.78 
330 0.167 -0.164 0.96 -0.53 
350 0.090 -0.28 
368 0.001 

0.144 10.118 
- 

PLATE 
6 132 

0.144 -0.118 

2 39 0.011 
258 -0.097 
281 -0.162 -0.198 
299 -0.166 -0.217 
313 -0.145 -0.208 
330 -0.094 -0.168 
35 0 -0.005 -0.097 
36 8 04096 -0.008 - 0.217 

0.110 0.149 
- 387 

LT- 
-1.95 

1.19 0.89* 
-0.04 0.54"" 

11111..11. 

- 
-0.30 
-0.55 
-0.77 -1.15 
-0.91 -1.12 
-1.01 -1.07 
-1.14 -1.02 
-1.33 -0.99 
-1.53 -0.98 - 

1.06* 
-0.038 -0.149 -1.04 -1.06** 

-1.31 
1.04 
- 

*Mean Absolute difference 
**Mean di f fe rence  



5 .  CONCLUSIONS 

The p ro jec t ive  equat ions cannot be used t o  reduce the e n t i r e  area 

of a BC-4 stellar p l a t e ,  

toward the  o u t e r  edges of the  p l a t e .  

Unmodeled d i s t o r t i o n  e f f e c t s  are t o o  g r e a t  

However, i f  the z e n i t h  d i s t a n c e  is 

such tha t  a r e f r a c t i o n  model can be considered cons tan t ,  and i f  l e n s  dis- 

t o r t i o n  parameters are known and f a i r l y  cons tan t  f o r  a given camera, then 

t h e  p ro jec t ive  equat ions  could be used f o r  an  e n t i r e  p l a t e  reduct ion a f t e r  

the measured coord ina tes  are cor rec ted  fo r  l e n s  d i s t o r t i o n  e f f e c t s  and the 

stellar coord ina tes  cor rec ted  t o  contain the e f f e c t s  of atmospheric refrac-  

t i on .  I n  f a c t ,  c e r t a i n  agencies  do not calibrate the camera f o r  each ex= 

posure. Parameters from a previous adjustment a r e  used and considered 

cons tan t  f o r  a per iod of t i m e .  The behavior of the d i s t o r t i o n  character-  

i s t i c s  of an As t ro t a r  l e n s  over a period of t i m e  i s  n o t  known t o  t h i s  

author.  However, i f  it is  not  necessary t o  r e c a l i b r a t e  t he  BC-4 camera 

a f t e r  each exposure, it appears  that  the p ro jec t ive  equat ions  could be 

appl ied  using the procedure j u s t  descr ibed t o  o b t a i n  results equal  t o  

those a complete photogrammetric reduct ion  m u l d  provide. 

co r rec t ions  are made f o r  l e n s  d i s t o r t i o n s  b u t  t he  s te l la r  coord ina tes  have 

I f  no pre- 

r e f r a c t i o n  e f f e c t s  added, then the  experimentation shows, a t  least f o r  

th ree  BC-4 cameras, tha t  a confined area no g rea t e r  than 3 cent imeters  

( 6  degrees) i n  r ad ius  from the p l a t e  c e n t e r  can be reduced wi th  good 

r e s u l t s .  This area, labelled Model 1, is indicated i n  Char t s  36, 37, and 

89 
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38. An image as  c lose  as poss ib le  t o  the geometr ical  p l a t e  c e n t e r  should 

be used as the  o p t i c a l  c e n t e r ,  but no i t e r a t i o n  techniques need be appl ied 

t o  ob ta in  the o p t i c a l  c e n t e r  i f  the p ro jec t ive  equat ions are used. 

It  is obvious from the  results of the experimentation with Model 2, 

that i f  enough higher  o rde r  terms are included i n  the  t ransformation equa- 

t i o n s ,  the reduction r e s u l t s  can be made comparable t o  those  obtained 

photogrammetrically. However, 20 unknowns a r e  a l ready enough t o  warrant 

using a complete photogrammetric reduction. Model 2 h a s  p o s s i b i l i t i e s  

i f  a reduced p l a t e  a r e a  i s  t o  be used so that  seve ra l  h igher  order  terms 

can be dropped y e t  no pre-cor rec t ions  be made f o r  l e n s  d i s t o r t i o n s .  

Model 3 should be appl ied  with caut ion  under the fol lowing condi- 

t ions .  

A. The s a t e l l i t e  image(s1 f o r  which d i r e c t i o n s  are desired should 

be located c lose  t o  the geometrical  p l a t e  c e n t e r  and completely contained 

i n  t h e  f i e l d  of re ference  stars used i n  t h e  reduction. 

B. S u f f i c i e n t  star images should be ava i l ab le  and equal ly  d i s t r i b -  

u ted  i n  a l l  d i r e c t i o n s  around t h e  s a t e l l i t e  images. P l a t e  6132 g ives  a 

good example of t h i s .  

t i o n s  computed f o r  P l a t e s  2559 and 5205. 

V io la t ion  of t h i s  shows up i n  the  s a t e l l i t e  direc-  

C. The area of reduct ion should be no g r e a t e r  than 2 cent imeters  

(4  degrees)  i n  rad ius  i f  t h e  Bc-4 l e n s  d i s t o r t i o n  c h a r a c t e r i s t i c s  are 

comparable t o  those of t h e  camera that exposed P l a t e  6132 and condi t ions  

A and B exis t .  

1.5 cent imeters  ( 3  degrees) i n  rad ius ,  the reduction should be done i n  

t h i s  area. 

General ly ,  i f  condi t ions  A and B exist wi th in  a f i e l d  
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D. The choice of t he  po in t  of tangency of t he  tangent  p l a t e  

should be made with extreme care. Therefore,  the  geometrical  cen te r  must 

be approximated as c lose ly  as poss ib l e  i n  r i g h t  ascension and dec l ina t ion .  

I f  poss ib le ,  an  i t e r a t i o n  technique should be used t o  obta in  the best 

po in t  of tangency t o  use as an o r i g i n  f o r  both t h e  p l a t e  and standard 

coordinate sys tems. 

Char t s  36, 37, and 38 a l s o  show the  area where success  should be 

achieved using Model 3 i f  t h e  condi t ions  mentioned above exist  as f o r  

P l a t e  6132. The f i e l d  shown is 3 degrees i n  r a d i u s  although t h i s  could 

probably be expanded i f  a good d i s t r i b u t i o n  of stars exis ted .  The Model 

3 reduct ion was not  i d e a l l y  appl ied  f o r  P l a t e s  2559 and 5205 because of 

a lack of condi t ion A and B, 

the  recommended area given one must s t i l l  a l low f o r  the o the r  condi t ions  

to  be m e t .  

Therefore ,  i n  confining t h e  reduct ion t o  

We must conclude, t he re fo re ,  t h a t  general  as t romet r ic  techniques 

are not  adequate when used alone t o  reduce e n t i r e  p l a t e  areas f o r  sho r t  

f o c a l  length  ba l l i s t i c  cameras. 

modeling, such as  the photogrammetric method provides ,  f o r  the reduction 

t o  obta in  accu rac i e s  t h a t  p re sen t  day equipment w i l l  provide. 

D i s to r t ions  involved requi re  s p e c i f i c  

However, 

as t romet r ic  techniques can be appl ied t o  advantage i f  done i n  one of the 

ways described above depending on t h e  na ture  of t he  tak ing  camera and t h e  

loca t ion  of t he  satel l i te  images w i t h  respec t  t o  the o p t i c a l  axis. 

F igures  1 through 6 show the values  given i n  Tables  2 t o  6 p l o t t e d  

The r e s u l t s  presented here are as f o r  each of the  21 s a t e l l i t e  images. 

expected. The reduct ions  wi th  h igher  s tandard errors of u n i t  weight 
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Table 7 

Model 
No. - 
1 

1 

1 

1 

1 

2 

3 

3 

Summary of Standard E r r o r s  of Unit  Weight f o r  t h e  Astrometr ic  
Reductions and t h e  ESSA Photogrammetric Reduction 

Numbers given are i n  microns, 

Test 
No - 
1 

2 

3 

4 

5 

1 

2 

Descript ion P l a t e  

ESSA Photogrammetric 2.96 
2559 - 

Projec t ive  equat ions  appl ied 10.04 
t o  e n t i r e  p l a t e  area 

Same as Tes t  1 but  with mea- 10.05 
sured coord ina tes  co r rec t ed  
f o r  decenter ing  d i s t o r t i o n  

Same as Test  1 but  with mea- 3.06 
sured coord ina tes  cor rec ted  
f o r  a l l  l e n s  d i s t o r t i o n s  

P ro jec t ive  equat ions  appl ied 2.82 
t o  stars wi th in  3.4 cm. of 
p l a t e  c e n t e r  

P ro jec t ive  equat ions  appl ied 3.96 
t o  stars wi th in  4 cm. of 
p l a t e  c e n t e r  

"Long" Turner 's  f o r  e n t i r e  3-80 
p l a t e  area 

"Short" Turner 's  f o r  stars d o  
wi th in  2.8 cm. of p l a t e  
c e n t e r  (2.2 cm. f o r  6132) 

"Short" Turner 's  f o r  stars i n  2.24 
immediate v i c i n i t y  of p l a t e  
cen te r  

, P l a t e  
5205 

3.17 

10.03 

u 

10.35 

3.34 

2.96 

3.08 

4.19 

5.56 

3.69 

P l a t e  
6132 
2.80 

7.81 

- 

7.77 

2.62 

2.37 

3.24 

3.39 

2.59 

3.04 
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show larger dev ia t ions  i n  computed satell i te p o s i t i o n s  from the ESSA 

pos i t ions ,  Tes t  1 f o r  Model 1 is  a good example of this .  Generally,  

p lots  are roughly symmetric about the p l a t e  cen te r ,  i l l u s t r a t i n g  the 

e f f e c t  of the p a r t i c u l a r  mathematical s t r u c t u r e  at  a given d i s t ance  from 

the p l a t e  center .  

Table 13 summarizes the standard e r r o r s  of u n i t  weight f o r  t he  

astrometric reduct ions.  



A 

B I  BLIOGRAHiY 

Aeronautical  C h a r t  and Information Center (1968). Submitted Material for  
the Reduction of  ESSA Measurements f o r  Event 1536, St .  Louis ,  
Missouri .  

Al len ,  Robert Shaw (1966). "A Computer Program f o r  U s e  i n  Computing a 
P i r s t  Order La t i tude  by t h e  Horrebow-Talcott Method," Master of 
Science Thesis ,  The Ohio S t a t e  University.  

American Ephemeris and Nautical Almanac (A.E.N.A.) .for the  Year 196X, 
Issued by the Nau t i ca l  Almanac Off ice ,  United S t a t e s  Naval Obser- 
vatory. 

American Society of Photogranmetry (1966). Manual of PhotoPrammetry, 
Third Editson, Vol. I ,  Vol. IT, American Socie ty  of Photogrammetry, 
F a l l s  Church, Virginia .  

Berbert ,  J. H., Good, W. E., and Oosterhaut,  J. D. (1962). '*Reduction of 
the Minitrack Astrographic  P la tes , "  Photographic Science and E w i -  
neering, Nov.-Dec. 

Brown Associates ,  Inc. (1966). ''Geodetic Data Analysis  f o r  &os A, An 
Experimental Design," Prepared f o r  Nat ional  Aeronaut ics  and Space 
Administration, Goddard Space F l i g h t  Center,  Greenbelt ,  Maryland, 
Contract  NAS 4-9860. 

Brown, 

Brown, 

Brown, 

Duane C. (1957). "A Treatment of Analy t i ca l  Photogrammetry with 
Emphasis on Bal l i s t ic  Camera Applicat ions,"  RCA Data Reduct ion  
Technical  Report, No. 39, A i r  Force Missile Tes t  Center ,  A i r  
Research and Development Command, Pa t r i ck  AFB, Blorida.  

Duane C. (1963). '@Notes on the Reduction of S t e l l a r  P l a t e s  f o r  
Determination of Di rec t ions  of Flashing Light  Beacons," The U s e  of 
A r t i f i c i a l  S a t e l l i t e s  i n  Geodesy (Veis, G. e d i t o r )  In t e r sc i ence  
Publ i shers ,  New YorIc, pp. 163-186. 

Duane C. (1964). "An Advanced Reduction and Ca l ib ra t ion  f o r  
Photogrammetric Cameras,'' Prepared f o r  A i r  Force Cambridge Research 
Labora tor ies ,  Off ice of Aerospace Research, United States A i r  Force, 
Bedford, Massachusetts, January. 

Computer Center  of The Ohio S t a t e  University.  SCATRAN Reference Manual 
and "General P l o t  Package, 'I Columbus, Ohio, 1965. 

103 



Conference on the  Construct ion and U s e  of S t a r  Catalogues (19661, he ld  
held a t  t h e  Universi ty  of Maryland. 3-5 October 1966. Reprinted 
from the  Astronomical- Journal; Vol: 72, No. 5 ,  pp. 551-630, June, 
1967. 

Conrady, A. (1919). "Decentered Lens Systems," Monthly Not ices  of  Royal 
Astronomical Soc ie ty ,  Vol. 79, pp. 384-390. 

Eichhorn, Heinr ich (1962). "Astrometric Inves t iga t ion  of a Baker-Nunn 
Camera,** Van Vleck Observatory, Middletown, Conn., Report on A i r  
Force Contract  19(604)-7330. 

Eichhorn, Weinrich (1963). 
of S t a r s  .and the  Measured Coordinates of t h e i r  Images," Applied 
Opt ics ,  Jahuary. 

"The Relat ionship Between Standard Coordinates  

Bichhorn, Heinr ich  (1963). " Inves t iga t ions  on Photographic Astrometric 
Technique," Van Vleck Observatory, Middletown, Connecticut,  Report 
on A i r  Force Contract  19(604)-7330. 

Eichhorn, Heinr ich  and W i l l i a m s ,  Carol  A. (1963). "On the  Systematic 
Accuracy of Photographic Astrometric Data," Astronomical Journal ,  
Vol. 68, NO. 4, pp. 221-231. 

Environmental Science Se rv ices  Administration (1967). S a t e l l i t e  Triangu- 
l a t ion  Data f o r  Event 1536, 30 November 1965, Roclcville, Maryland. 

Explanatory Supplement to  the Astronomical Ephemeris and the American 
Ephemeris and Naut ica l  Almanac (1961). 
Nautical Almanac Of f i ces  of the United Pingdom and the United 
S t a t e s  of America, H e r  Majesty*s S ta t ionery  Of f i ce ,  London. 

Prepared j o i n t l y  by the 

Fal lon,  Frederick W. (1966) ''Star Catalogue Requirements f o r  Satteli te 
Geodesy," Conference on the Construct ion and Use of S t a r  Catalogues,  
pp. 611-616. 

Fallon, Frederick W. (1967). "A General Solu t ion  t o  t h e  Opt ica l  Sa te l -  
l i t e  Geodesy Problem," Paper presented t o  the  1967 Convention of 
the American Socie ty  of Photogrammetry and the American Congress 
on Surveying and Mapping, S t .  Louis,  Missouri ,  2-5 October. 

. 

Haligowski, Barbara A. and Eukac, Carl F. (1966). 'eReduction of S t a r  
Coordinates i n  Photographic Astrometry," Conference on the Con- 
s t r u c t i o n  and Use of S t a r  Catalogues, pp. 617-619. 

Hallert, Bertil (1960). Photogrammetry, Basic P r i n c i p l e s  and General 
Survey, McGraw-Hill Book Company, Inc. ,  New York. 



Haramundanis. K. (1966). "Experience of the SA0 i n  t h e  Construct ion and 
Use of S t a r  Catalogues,-" Conference on the  Construct ion and Use of 
S t a r  Catalogues,  pp. 588-596. 

Ho t t e r ,  Frank D. (1967). "Preprocessing Opt ica l  S a t e l l i t e  Observations,'' 
Reports of the Department of Geodetic Science, No, 82 ,  Prepared f o r  
Nat ional  Aeronautics and Space Administration, Washington, D.C., 
The Ohio S t a t e  Universi ty  Research Foundation, Apr i l .  

Je f fe rys ,  W. H. (1963). "On Computational Technique f o r  Photographic 
Astrometry with Overlapping Pla tes , "  Astronomical Journal ,  Vol. 68, 
No. 2. 

Mueller,  Ivan I. (1964). In t roduct ion  t o  S a t e l l i t e  Geodesy, Frederick 
Ungar Publ ishing Co., New York. 

Mueller, Ivan I. ( I n  Press) .  Spher ica l  and P r a c t i c a l  Astronomy Applied 
t o  Geodese, Ungar Publ ishing Co., New York. 

Mueller, Ivan I., Ho t t e r ,  F. D., Krakiwsky, E. J., and Pope, A.J. (1967) 
'@Global Satell i te Tr iangula t ion  and Tr i l a t e ra t ion . "  Paper presented 
a t  XIVth General Assembly of the  I n t e r n a t i o n a l  Union of  Geodesy and 
Geophysics, Lucerne, Switzer land,  September 25 - October 7 ,  1967, by 
t h e  Department of Geodetic Science,  The Ohio S t a t e  University.  

Murton, W i l l i a m  N. 11. (1967). General 7094 P l o t  Caller, Computer Center  
of The Ohio S t a t e  Univers i ty ,  Columbus, Ohio. 

Nat iona l  Aeronautics and Space Administration (1968). Submitted Material 
f o r  t h e  Reduction of ESSA Measurements f o r  Event 1536, Cambridge, 
Massachusetts. 

Podobed, V. V. (1965). Fundamental Astrometry, E n g l i +  e d i t i o n  e d i t e d  by 
Vyssotsky, A. N .  Univers i ty  of  Chicago Press ,  Chicago. 

Schmid, H. H. (1959). "A General Analy t ica l  Solu t ion  t o  t h e  Problem of 
Photogrammetry," B a l l i s t i c  Research Laboratory Report ,  1065. 

Slama, Chester (1967). P r i v a t e  Communication t o  D r .  Ivan I. Mueller of 
the  Department of Geodetic Science,  The Ohio S t a t e  Universi ty .  

Smart, W, M. (1962). Text-Book on Spher ica l  A s t r o n o q ,  F i f t h  Edi t ion ,  
Cambridge Universi ty  Press .  

Smithsonian Astrophysical  Observatory (1968). Submitted Material for  t h e  
Reduction of ESSA Measurements f o r  Event 1536, Cambridge, Massachusetts. 



I 

106 

Stark,  Marshall hl. (1967). "Refraction and the Determination of Second 
Order Astronomic Atitudes," Master of Science Thesis,  The Ohio 
S ta t e  University. 

Taylor, Eugene A. (1963). "Optical Tracking System f o r  Space Geodesy." 
The U s e  of A r t i f i c i a l  S a t e l l i t e s  i n  Geodesy ( V e i s ,  G. ed i to r )  
Interscience Publishers,  New York, pp. 18'7-192. 

Turner, H. H. (1893). "Preliminary Notes on the Reduction of Photographic 
Plates,' '  Monthly Notices of the  Royal Astronomical Society,  Vol. 54; 
pp. 11-22. 

Uotila,  Urho A. (1967). Introduction t o  Adjustment Computations with 
Matrices, Department of Geodetic Science, The Ohio S t a t e  University. 

Van de Kamp, Peter (1967'). Pr inc ip les  of Astrometry, W. H. Freeman and Co., 
San Prancisco and London. 

Veach, James. (1967). Modification of Allen, 1966 f o r  SA0 Catalogue 
Input. Department of Geodetic Science, The Ohio S t a t e  University, 
Columbus, Ohio. 

Veis, George, e d i t o r  (1963). 
Proceedings of the Firs t  In te rna t iona l  Symposium on the Use of 

The Use of A r t i f i c i a l  S a t e l l i t e s  f o r  Geodesy, 

A r t i f i c i a l  S a t e l l i t e s  f o r  Geodesy, Interscience Wbl ishers ,  New 
York. 

.c 


